Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 1, Pages 40–67 (Mi aa1368)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE

O. Beznosovaa, A. Reznikovbc

a Department of Mathematics, Baylor University, One Bear Place \#97328, Waco, TX 76798-7328, USA
b Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
c St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
References:
Abstract: It is a well-known fact that the union $\bigcup_{p>1}RH_p$ of the Reverse Hölder classes coincides with the union $\bigcup_{p>1}A_p=A_\infty$ of the Muckenhoupt classes, but the $A_\infty$ constant of the weight $w$, which is a limit of its $A_p$ constants, is not a natural characterization for the weight in Reverse Hölder classes. In the paper, the $RH_1$ condition is introduced as a limiting case of the $RH_p$ inequalities as $p$ tends to 1, and a sharp bound is found on the $RH_1$ constant of the weight $w$ in terms of its $A_\infty$ constant. Also, the sharp version of the Gehring theorem is proved for the case of $p=1$, completing the answer to the famous question of Bojarski in dimension one.
The results are illustrated by two straightforward applications to the Dirichlet problem for elliptic PDE's.
Despite the fact that the Bellman technique, which is employed to prove the main theorems, is not new, the authors believe that their results are useful and prove them in full detail.
Received: 10.11.2012
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 1, Pages 27–47
DOI: https://doi.org/10.1090/S1061-0022-2014-01329-5
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. Beznosova, A. Reznikov, “Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE”, Algebra i Analiz, 26:1 (2014), 40–67; St. Petersburg Math. J., 26:1 (2015), 27–47
Citation in format AMSBIB
\Bibitem{BezRez14}
\by O.~Beznosova, A.~Reznikov
\paper Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 1
\pages 40--67
\mathnet{http://mi.mathnet.ru/aa1368}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234812}
\elib{https://elibrary.ru/item.asp?id=21826344}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 1
\pages 27--47
\crossref{https://doi.org/10.1090/S1061-0022-2014-01329-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84913554283}
Linking options:
  • https://www.mathnet.ru/eng/aa1368
  • https://www.mathnet.ru/eng/aa/v26/i1/p40
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024