Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 5, Pages 61–85 (Mi aa1354)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

Characterization of cyclic Schur groups

S. Evdokimova, I. Kovácsb, I. Ponomarenkoa

a St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
b IAM and FAMNIT, University of Primorska, Muzejski trg 2, SI6000, Koper, Slovenia
References:
Abstract: A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. It was proved by R. Pöschel (1974) that, given a prime $p\ge5$, a $p$-group is Schur if and only if it is cyclic. We prove that a cyclic group of order $n$ is Schur if and only if $n$ belongs to one of the following five families of integers: $p^k$, $pq^k$, $2pq^k$, $pqr$, $2pqr$ where $p,q,r$ are distinct primes, and $k\ge0$ is an integer.
Keywords: Schur ring, Schur group, permutation group, circulant cyclotomic S-ring, generalized wreath product.
Received: 07.09.2012
English version:
St. Petersburg Mathematical Journal, 2014, Volume 25, Issue 5, Pages 755–773
DOI: https://doi.org/10.1090/S1061-0022-2014-01315-5
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, Algebra i Analiz, 25:5 (2013), 61–85; St. Petersburg Math. J., 25:5 (2014), 755–773
Citation in format AMSBIB
\Bibitem{EvdKovPon13}
\by S.~Evdokimov, I.~Kov\'acs, I.~Ponomarenko
\paper Characterization of cyclic Schur groups
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 5
\pages 61--85
\mathnet{http://mi.mathnet.ru/aa1354}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184607}
\zmath{https://zbmath.org/?q=an:1303.05213}
\elib{https://elibrary.ru/item.asp?id=24050051}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 5
\pages 755--773
\crossref{https://doi.org/10.1090/S1061-0022-2014-01315-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926453857}
Linking options:
  • https://www.mathnet.ru/eng/aa1354
  • https://www.mathnet.ru/eng/aa/v25/i5/p61
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :63
    References:48
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024