|
This article is cited in 28 scientific papers (total in 28 papers)
Research Papers
The normalizer of Chevalley groups of type $\mathrm{E}_6$
N. A. Vavilov, A. Yu. Luzgarev St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
We consider the simply connected Chevalley group $G(\mathrm{E}_6,R)$ of type $\mathrm{E}_6$ in a 27-dimensional representation. The main goal is to establish that the following four groups coincide: the normalizer of the Chevally group $G(\mathrm{E}_6,R)$ itself, the normalizer of its elementary subgroup $E(\mathrm{E}_6,R)$, the transporter of $E(\mathrm{E}_6,R)$ in $G(\operatorname{E}_6,R)$, and the extended Chevalley group $\overline G(\mathrm{E}_6,R)$. This is true over an arbitrary commutative ring $R$, all normalizers and transporters being taken in $\mathrm{GL}(27,R)$. Moreover, $\overline G(\mathrm{E}_6,R)$ is characterized as the stabilizer of a system of quadrics. This result is classically known over algebraically closed fields; in the paper it is established that the corresponding scheme over $\mathbb{Z}$ is smooth, which implies that the above characterization is valid over an arbitrary commutative ring. As an application of these results, we explicitly list equations a matrix $g\in\mathrm{GL}(27,R)$ must satisfy in order to belong to $\overline G(\mathrm{E}_6,R)$. These results are instrumental in a subsequent paper of the authors, where overgroups of exceptional groups in minimal representations will be studied.
Keywords:
Chevalley groups, elementary subgroups, normal subgroups, standard description, minimal module, parabolic subgroups, decomposition of unipotents, root elements, orbit of the highest weight vector, the proof from the Book.
Received: 20.05.2007
Citation:
N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}_6$”, Algebra i Analiz, 19:5 (2007), 37–64; St. Petersburg Math. J., 19:5 (2008), 699–718
Linking options:
https://www.mathnet.ru/eng/aa135 https://www.mathnet.ru/eng/aa/v19/i5/p37
|
Statistics & downloads: |
Abstract page: | 775 | Full-text PDF : | 294 | References: | 83 | First page: | 10 |
|