Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 5, Pages 37–64 (Mi aa135)  

This article is cited in 30 scientific papers (total in 30 papers)

Research Papers

The normalizer of Chevalley groups of type E6E6

N. A. Vavilov, A. Yu. Luzgarev

St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We consider the simply connected Chevalley group G(E6,R)G(E6,R) of type E6E6 in a 27-dimensional representation. The main goal is to establish that the following four groups coincide: the normalizer of the Chevally group G(E6,R)G(E6,R) itself, the normalizer of its elementary subgroup E(E6,R)E(E6,R), the transporter of E(E6,R)E(E6,R) in G(E6,R)G(E6,R), and the extended Chevalley group ¯G(E6,R)¯¯¯¯G(E6,R). This is true over an arbitrary commutative ring RR, all normalizers and transporters being taken in GL(27,R)GL(27,R). Moreover, ¯G(E6,R)¯¯¯¯G(E6,R) is characterized as the stabilizer of a system of quadrics. This result is classically known over algebraically closed fields; in the paper it is established that the corresponding scheme over Z is smooth, which implies that the above characterization is valid over an arbitrary commutative ring. As an application of these results, we explicitly list equations a matrix gGL(27,R) must satisfy in order to belong to ¯G(E6,R). These results are instrumental in a subsequent paper of the authors, where overgroups of exceptional groups in minimal representations will be studied.
Keywords: Chevalley groups, elementary subgroups, normal subgroups, standard description, minimal module, parabolic subgroups, decomposition of unipotents, root elements, orbit of the highest weight vector, the proof from the Book.
Received: 20.05.2007
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 5, Pages 699–718
DOI: https://doi.org/10.1090/S1061-0022-08-01016-9
Bibliographic databases:
Document Type: Article
MSC: 20G15
Language: Russian
Citation: N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type E6”, Algebra i Analiz, 19:5 (2007), 37–64; St. Petersburg Math. J., 19:5 (2008), 699–718
Citation in format AMSBIB
\Bibitem{VavLuz07}
\by N.~A.~Vavilov, A.~Yu.~Luzgarev
\paper The normalizer of Chevalley groups of type $\mathrm{E}_6$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 37--64
\mathnet{http://mi.mathnet.ru/aa135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381940}
\zmath{https://zbmath.org/?q=an:1206.20054}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 699--718
\crossref{https://doi.org/10.1090/S1061-0022-08-01016-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000002}
Linking options:
  • https://www.mathnet.ru/eng/aa135
  • https://www.mathnet.ru/eng/aa/v19/i5/p37
  • This publication is cited in the following 30 articles:
    1. R. Lubkov, “Reverse Decomposition of Unipotents in Polyvector Representations”, J Math Sci, 2025  crossref
    2. Elena Bunina, “Automorphisms of Chevalley groups over commutative rings”, Communications in Algebra, 52:6 (2024), 2313  crossref
    3. Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor, “Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square”, Geom Dedicata, 218:1 (2024)  crossref
    4. Roman Lubkov, Ilia Nekrasov, “Overgroups of exterior powers of an elementary group. levels”, Linear and Multilinear Algebra, 72:4 (2024), 563  crossref
    5. R. A. Lubkov, “Nadgruppy elementarnykh grupp v polivektornykh predstavleniyakh”, Voprosy teorii predstavlenii algebr i grupp. 40, Posvyaschaetsya pamyati Nikolaya Aleksandrovicha VAVILOVA, Zap. nauchn. sem. POMI, 531, POMI, SPb., 2024, 101–116  mathnet
    6. R. A. Lubkov, “Obratnoe razlozhenie unipotentov v polivektornykh predstavleniyakh”, Voprosy teorii predstavlenii algebr i grupp. 38, Zap. nauchn. sem. POMI, 513, POMI, SPb., 2022, 120–138  mathnet  mathscinet
    7. N. Vavilov, V. Migrin, “Colourings of exceptional uniform polytopes of types E6 and E7”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIV, Zap. nauchn. sem. POMI, 517, POMI, SPb., 2022, 36–54  mathnet  mathscinet
    8. N. A. Vavilov, Z. Zhang, “Relative Centralizers of Relative Subgroups”, J Math Sci, 264:1 (2022), 4  crossref
    9. Lubkov R., “The Reverse Decomposition of Unipotents For Bivectors”, Commun. Algebr., 49:10 (2021), 4546–4556  crossref  mathscinet  isi  scopus
    10. N. A. Vavilov, Z. Zhang, “Relative centralisers of relative subgroups”, Voprosy teorii predstavlenii algebr i grupp. 35, Zap. nauchn. sem. POMI, 492, POMI, SPb., 2020, 10–24  mathnet
    11. J. Math. Sci. (N. Y.), 243:4 (2019), 515–526  mathnet  crossref
    12. R. A. Lubkov, I. I. Nekrasov, “Explicit equations for exterior square of the general linear group”, J. Math. Sci. (N. Y.), 243:4 (2019), 583–594  mathnet  crossref
    13. M. M. Atamanova, A. Yu. Luzgarev, “Cubic forms on adjoint representations of exceptional groups”, J. Math. Sci. (N. Y.), 222:4 (2017), 370–379  mathnet  crossref  mathscinet
    14. J. Math. Sci. (N. Y.), 209:6 (2015), 922–934  mathnet  crossref
    15. N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of the Chevalley group of type E7”, St. Petersburg Math. J., 27:6 (2016), 899–921  mathnet  crossref  mathscinet  isi  elib
    16. J. Math. Sci. (N. Y.), 219:3 (2016), 355–369  mathnet  crossref  mathscinet
    17. N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type E7 in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251  mathnet  crossref
    18. I. M. Pevzner, “Width of groups of type E6 with respect to root elements. II”, J. Math. Sci. (N. Y.), 180:3 (2012), 338–350  mathnet  crossref
    19. I. M. Pevzner, “The geometry of root elements in groups of type E6”, St. Petersburg Math. J., 23:3 (2012), 603–635  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    20. A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of E(m,R)E(n,R). I”, St. Petersburg Math. J., 23:5 (2012), 819–849  mathnet  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:822
    Full-text PDF :310
    References:98
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025