Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 3, Pages 3–51 (Mi aa1336)  

This article is cited in 6 scientific papers (total in 6 papers)

Expository Surveys

Sublinear dimension growth in the Kreiss Matrix Theorem

N. Nikolskiab

a University Bordeaux 1, France
b St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
Full-text PDF (522 kB) Citations (6)
References:
Abstract: We discuss a possible sublinear dimension growth in the Kreiss Matrix Theorem bounding the stability constant in terms of the Kreiss resolvent characteristic. Such a growth is proved for matrices having unimodular spectrum and acting on a uniformly convex Banach space. The principal ingredients to results obtained come from geometric properties of eigenvectors, where we use and compare the approaches by C. A. McCarthy–J. Schwartz (1965) and V. I. Gurarii–N. I. Gurarii (1971). The sharpness issue is verified via finite Muckenhoupt bases (by using mostly the approach by M. Spijker, S. Tracogna, and B. Welfert (2003)).
Keywords: power bounded, Kreiss Matrix Theorem, unconditional basis, Muckenhoupt condition.
Received: 12.12.2012
English version:
St. Petersburg Mathematical Journal, 2014, Volume 25, Issue 3, Pages 361–396
DOI: https://doi.org/10.1090/S1061-0022-2014-01295-2
Bibliographic databases:
Document Type: Article
Language: English
Citation: N. Nikolski, “Sublinear dimension growth in the Kreiss Matrix Theorem”, Algebra i Analiz, 25:3 (2013), 3–51; St. Petersburg Math. J., 25:3 (2014), 361–396
Citation in format AMSBIB
\Bibitem{Nik13}
\by N.~Nikolski
\paper Sublinear dimension growth in the Kreiss Matrix Theorem
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 3
\pages 3--51
\mathnet{http://mi.mathnet.ru/aa1336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184597}
\zmath{https://zbmath.org/?q=an:1302.47010}
\elib{https://elibrary.ru/item.asp?id=20730207}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 3
\pages 361--396
\crossref{https://doi.org/10.1090/S1061-0022-2014-01295-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924355843}
Linking options:
  • https://www.mathnet.ru/eng/aa1336
  • https://www.mathnet.ru/eng/aa/v25/i3/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025