Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 2, Pages 251–278 (Mi aa1332)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

Spectral and scattering theory for perturbations of the Carleman operator

D. R. Yafaev

IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
Full-text PDF (344 kB) Citations (7)
References:
Abstract: The spectral properties of the Carleman operator (the Hankel operator with the kernel h0(t)=t1) are studied; in particular, an explicit formula for its resolvent is found. Then, perturbations are considered of the Carleman operator H0 by Hankel operators V with kernels v(t) decaying sufficiently rapidly as t and not too singular at t=0. The goal is to develop scattering theory for the pair H0, H=H0+V and to construct an expansion in eigenfunctions of the continuous spectrum of the Hankel operator H. Also, it is proved that, under general assumptions, the singular continuous spectrum of the operator H is empty and that its eigenvalues may accumulate only to the edge points 0 and π in the spectrum of H0. Simple conditions are found for the finiteness of the total number of eigenvalues of the operator H lying above the (continuous) spectrum of the Carleman operator H0, and an explicit estimate of this number is obtained. The theory constructed is somewhat analogous to the theory of one-dimensional differential operators.
Keywords: Hankel operators, resolvent kernels, absolutely continuous spectrum, eigenfunctions, wave operators, scattering matrix, resonances, discrete spectrum, total number of eigenvalues.
Received: 20.09.2012
English version:
St. Petersburg Mathematical Journal, 2014, Volume 25, Issue 2, Pages 339–359
DOI: https://doi.org/10.1090/S1061-0022-2014-01294-0
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. R. Yafaev, “Spectral and scattering theory for perturbations of the Carleman operator”, Algebra i Analiz, 25:2 (2013), 251–278; St. Petersburg Math. J., 25:2 (2014), 339–359
Citation in format AMSBIB
\Bibitem{Yaf13}
\by D.~R.~Yafaev
\paper Spectral and scattering theory for perturbations of the Carleman operator
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 251--278
\mathnet{http://mi.mathnet.ru/aa1332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114858}
\zmath{https://zbmath.org/?q=an:06371653}
\elib{https://elibrary.ru/item.asp?id=20730206}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 339--359
\crossref{https://doi.org/10.1090/S1061-0022-2014-01294-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923489292}
Linking options:
  • https://www.mathnet.ru/eng/aa1332
  • https://www.mathnet.ru/eng/aa/v25/i2/p251
  • This publication is cited in the following 7 articles:
    1. M. A. Lyalinov, “Long-Time Evolution Described by the Unitary Group of the Mehler Operator”, J Math Sci, 283:4 (2024), 562  crossref
    2. Peter Otte, “A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX”, Rocky Mountain J. Math., 54:5 (2024)  crossref
    3. M. A. Lyalinov, “Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations”, Theoret. and Math. Phys., 213:2 (2022), 1560–1588  mathnet  crossref  crossref  mathscinet  adsnasa
    4. D. R. Yafaev, “Spectral and scattering theory for differential and Hankel operators”, Adv. Math., 308 (2017), 713–766  crossref  mathscinet  zmath  isi  elib  scopus
    5. D. R. Yafaev, “On finite rank Hankel operators”, J. Funct. Anal., 268:7 (2015), 1808–1839  crossref  mathscinet  zmath  isi  scopus
    6. A. Pushnitski, D. Yafaev, “Spectral and scattering theory of self-adjoint Hankel operators with piecewise continuous symbols”, J. Operator Theory, 74:2 (2015), 417–455  crossref  mathscinet  zmath  isi  elib  scopus
    7. D. R. Yafaev, “Criteria for Hankel operators to be sign-definite”, Anal. PDE, 8:1 (2015), 183–221  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :108
    References:98
    First page:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025