Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 2, Pages 162–192 (Mi aa1328)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in $\mathbb R^3$

C. Ortoleva, G. Perelman

Université Paris-Est Créteil, Créteil Cedex, France
Full-text PDF (388 kB) Citations (8)
References:
Abstract: The energy critical focusing nonlinear Schrödinger equation $i\psi_t=-\Delta\psi-|\psi|^4\psi$ in $\mathbb R^3$ is considered; it is proved that, for any $\nu$ and $\alpha_0$ sufficiently small, there exist radial finite energy solutions of the form $\psi(x,t)=e^{i\alpha(t)}\lambda^{1/2}(t)W(\lambda(t)x)+e^{i\Delta t}\zeta^*+o_{\dot H^1}(1)$ as $t\to+\infty$, where $\alpha(t)=\alpha_0\ln t$, $\lambda(t)=t^\nu$, $W(x)=(1+\frac13|x|^2)^{-1/2}$ is the ground state, and $\zeta^*$ is arbitrary small in $\dot H^1$.
Keywords: energy critical focusing nonlinear Schrödinger equation, Cauchy problem, ground state, blow up.
Received: 02.10.2012
English version:
St. Petersburg Mathematical Journal, 2014, Volume 25, Issue 2, Pages 271–294
DOI: https://doi.org/10.1090/S1061-0022-2014-01290-3
Bibliographic databases:
Document Type: Article
Language: English
Citation: C. Ortoleva, G. Perelman, “Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in $\mathbb R^3$”, Algebra i Analiz, 25:2 (2013), 162–192; St. Petersburg Math. J., 25:2 (2014), 271–294
Citation in format AMSBIB
\Bibitem{OrtPer13}
\by C.~Ortoleva, G.~Perelman
\paper Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 162--192
\mathnet{http://mi.mathnet.ru/aa1328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114854}
\zmath{https://zbmath.org/?q=an:1303.35103}
\elib{https://elibrary.ru/item.asp?id=20730202}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 271--294
\crossref{https://doi.org/10.1090/S1061-0022-2014-01290-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924408463}
Linking options:
  • https://www.mathnet.ru/eng/aa1328
  • https://www.mathnet.ru/eng/aa/v25/i2/p162
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :113
    References:68
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024