|
This article is cited in 4 scientific papers (total in 4 papers)
Research Papers
Supersymmetric structures for second order differential operators
F. Héraua, M. Hitrikb, J. Sjöstrandc a Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, and UMR 6629 CNRS
b Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
c IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR-21078 Dijon C\'edex, and UMR 5584 CNRS
Abstract:
Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators coupled to two heat baths, it is shown that no smooth supersymmetric structure can exist for a suitable interaction potential, provided that the temperatures of the baths are different.
Keywords:
eigenvalue splitting, tunnelling effect, Witten–Hodge Laplacian, Kramers–Fokker–Planck operator, Schrödinger operator.
Received: 25.10.2012
Citation:
F. Hérau, M. Hitrik, J. Sjöstrand, “Supersymmetric structures for second order differential operators”, Algebra i Analiz, 25:2 (2013), 125–154; St. Petersburg Math. J., 25:2 (2014), 241–263
Linking options:
https://www.mathnet.ru/eng/aa1326 https://www.mathnet.ru/eng/aa/v25/i2/p125
|
Statistics & downloads: |
Abstract page: | 322 | Full-text PDF : | 87 | References: | 64 | First page: | 24 |
|