Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 2, Pages 37–62 (Mi aa1322)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Schrödinger equations with time-dependent strong magnetic fields

D. Aiba, K. Yajima

Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Full-text PDF (364 kB) Citations (5)
References:
Abstract: Time dependent dd-dimensional Schrödinger equations itu=H(t)uitu=H(t)u, H(t)=(xiA(t,x))2+V(t,x)H(t)=(xiA(t,x))2+V(t,x) are considered in the Hilbert space H=L2(Rd) of square integrable functions. V(t,x) and A(t,x) are assumed to be almost critically singular with respect to the spatial variables xRd both locally and at infinity for the operator H(t) to be essentially selfadjoint on C0(Rd). In particular, when the magnetic fields B(t,x) produced by A(t,x) are very strong at infinity, V(t,x) can explode to the negative infinity like θ|B(t,x)|C(|x|2+1) for some θ<1 and C>0. It is shown that such equations uniquely generate unitary propagators in H under suitable conditions on the size and singularities of the time derivatives of the potentials ˙V(t,x) and ˙A(t,x).
Keywords: unitary propagator, Schrödinger equation, magnetic field, quantum dynamics, Stummel class, Kato class.
Received: 20.10.2012
English version:
St. Petersburg Mathematical Journal, 2014, Volume 25, Issue 2, Pages 175–194
DOI: https://doi.org/10.1090/S1061-0022-2014-01284-8
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Aiba, K. Yajima, “Schrödinger equations with time-dependent strong magnetic fields”, Algebra i Analiz, 25:2 (2013), 37–62; St. Petersburg Math. J., 25:2 (2014), 175–194
Citation in format AMSBIB
\Bibitem{AibYaj13}
\by D.~Aiba, K.~Yajima
\paper Schr\"odinger equations with time-dependent strong magnetic fields
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 37--62
\mathnet{http://mi.mathnet.ru/aa1322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114848}
\zmath{https://zbmath.org/?q=an:1304.35629}
\elib{https://elibrary.ru/item.asp?id=20730196}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 175--194
\crossref{https://doi.org/10.1090/S1061-0022-2014-01284-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924406384}
Linking options:
  • https://www.mathnet.ru/eng/aa1322
  • https://www.mathnet.ru/eng/aa/v25/i2/p37
  • This publication is cited in the following 5 articles:
    1. Yajima K., “Unitary Propagators For N-Body Schrodinger Equations in External Field”, Rev. Math. Phys., 33:1, SI (2021), 2060002  crossref  mathscinet  isi
    2. O. P. Popova, I. M. Fedorova, S. I. Koteleva, T. A. Skirda, M. S. Blyakher, S. V. Bunin, “CLINICAL AND IMMUNOLOGICAL FEATURES OF THE COMBINED COURSE OF PERTUSSIS AND CHLAMIDYAL INFECTION IN CHILDREN”, Det. infekc., 17:3 (2018), 16  crossref
    3. A. Michelangeli, A. Olgiati, “Gross–Pitaevskii non-linear dynamics for pseudo-spinor condensates”, J. Nonlinear Math. Phys., 24:3 (2017), 426–464  crossref  mathscinet  isi  scopus
    4. K. Yajima, “Existence and regularity of propagators for multi-particle Schrödinger equations in external fields”, Commun. Math. Phys., 347:1 (2016), 103–126  crossref  mathscinet  zmath  isi  scopus
    5. A. Michelangeli, “Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields”, Nonlinearity, 28:8 (2015), 2743–2765  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :106
    References:72
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025