Abstract:
Time dependent dd-dimensional Schrödinger equations i∂tu=H(t)ui∂tu=H(t)u, H(t)=−(∂x−iA(t,x))2+V(t,x)H(t)=−(∂x−iA(t,x))2+V(t,x) are considered in the Hilbert space H=L2(Rd) of square integrable functions. V(t,x) and A(t,x) are assumed to be almost critically singular with respect to the spatial variables x∈Rd both locally and at infinity for the operator H(t) to be essentially selfadjoint on C∞0(Rd). In particular, when the magnetic fields B(t,x) produced by A(t,x) are very strong at infinity, V(t,x) can explode to the negative infinity like −θ|B(t,x)|−C(|x|2+1) for some θ<1 and C>0. It is shown that such equations uniquely generate unitary propagators in H under suitable conditions on the size and singularities of the time derivatives of the potentials ˙V(t,x) and ˙A(t,x).
Citation:
D. Aiba, K. Yajima, “Schrödinger equations with time-dependent strong magnetic fields”, Algebra i Analiz, 25:2 (2013), 37–62; St. Petersburg Math. J., 25:2 (2014), 175–194
\Bibitem{AibYaj13}
\by D.~Aiba, K.~Yajima
\paper Schr\"odinger equations with time-dependent strong magnetic fields
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 37--62
\mathnet{http://mi.mathnet.ru/aa1322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114848}
\zmath{https://zbmath.org/?q=an:1304.35629}
\elib{https://elibrary.ru/item.asp?id=20730196}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 175--194
\crossref{https://doi.org/10.1090/S1061-0022-2014-01284-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924406384}
Linking options:
https://www.mathnet.ru/eng/aa1322
https://www.mathnet.ru/eng/aa/v25/i2/p37
This publication is cited in the following 5 articles:
Yajima K., “Unitary Propagators For N-Body Schrodinger Equations in External Field”, Rev. Math. Phys., 33:1, SI (2021), 2060002
O. P. Popova, I. M. Fedorova, S. I. Koteleva, T. A. Skirda, M. S. Blyakher, S. V. Bunin, “CLINICAL AND IMMUNOLOGICAL FEATURES OF THE COMBINED COURSE OF PERTUSSIS AND CHLAMIDYAL INFECTION IN CHILDREN”, Det. infekc., 17:3 (2018), 16
A. Michelangeli, A. Olgiati, “Gross–Pitaevskii non-linear dynamics for pseudo-spinor condensates”, J. Nonlinear Math. Phys., 24:3 (2017), 426–464
K. Yajima, “Existence and regularity of propagators for multi-particle Schrödinger equations in external fields”, Commun. Math. Phys., 347:1 (2016), 103–126
A. Michelangeli, “Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields”, Nonlinearity, 28:8 (2015), 2743–2765