Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2012, Volume 24, Issue 3, Pages 163–171 (Mi aa1287)  

This article is cited in 14 scientific papers (total in 14 papers)

Research Papers

On tight spherical designs

G. Nebe, B. Venkov

Lehrstuhl D für Mathematik, RWTH Aachen, Aachen, Germany
References:
Abstract: Let $X$ be a tight $t$-design of dimension $n$, and let $t=5$ or $t=7$ (the open cases). An investigation of the lattice generated by $X$ by using arithmetic theory of quadratic forms allows one to exclude infinitely many values of $n$.
Keywords: tight $t$-design, quadratic form.
Received: 01.11.2011
English version:
St. Petersburg Mathematical Journal, 2013, Volume 24, Issue 3, Pages 485–491
DOI: https://doi.org/10.1090/S1061-0022-2013-01249-0
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Nebe, B. Venkov, “On tight spherical designs”, Algebra i Analiz, 24:3 (2012), 163–171; St. Petersburg Math. J., 24:3 (2013), 485–491
Citation in format AMSBIB
\Bibitem{NebVen12}
\by G.~Nebe, B.~Venkov
\paper On tight spherical designs
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 3
\pages 163--171
\mathnet{http://mi.mathnet.ru/aa1287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3014131}
\zmath{https://zbmath.org/?q=an:1271.05021}
\elib{https://elibrary.ru/item.asp?id=20730161}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 3
\pages 485--491
\crossref{https://doi.org/10.1090/S1061-0022-2013-01249-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331548200006}
\elib{https://elibrary.ru/item.asp?id=20428021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877669560}
Linking options:
  • https://www.mathnet.ru/eng/aa1287
  • https://www.mathnet.ru/eng/aa/v24/i3/p163
  • This publication is cited in the following 14 articles:
    1. Yuchen Xiao, Xiaosheng Zhuang, “Spherical Framelets from Spherical Designs”, SIAM J. Imaging Sci., 16:4 (2023), 2072  crossref
    2. de Laat D. Machado F.C. de Oliveira Filho F.M. Vallentin F., “K-Point Semidefinite Programming Bounds For Equiangular Lines”, Math. Program., 194:1-2 (2022), 533–567  crossref  isi
    3. Peter Boyvalenkov, Hiroshi Nozaki, Navid Safaei, “Rationality of the inner products of spherical s-distance t-designs for t ≥ 2s - 2, s ≥ 3”, Linear Algebra and its Applications, 646 (2022), 107  crossref
    4. Iverson J.W. King E.J. Mixon D.G., “A Note on Tight Projective 2-Designs”, J. Comb Des., 29:12 (2021), 809–832  crossref  mathscinet  isi
    5. Bannai E. Bannai E. Xiang Z. Yu W.-H. Zhu Ya., “Classification of Spherical 2-Distance (4,2,1)-Designs By Solving Diophantine Equations”, Taiwan. J. Math., 25:1 (2021), 1–22  crossref  mathscinet  isi  scopus
    6. Boyvalenkov P. Stoyanova M., “Linear Programming Bounds For Covering Radius of Spherical Designs”, Results Math., 76:2 (2021), 95  crossref  mathscinet  isi
    7. Peter Boyvalenkov, Navid Safaei, 2021 XVII International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), 2021, 101  crossref
    8. A. Glazyrin, W.-H. Yu, “Upper bounds for $s$-distance sets and equiangular lines”, Adv. Math., 330 (2018), 810–833  crossref  mathscinet  zmath  isi  scopus
    9. E. Bannai, D. Zhao, L. Zhu, Ya. Zhu, Y. Zhu, “Half of an antipodal spherical design”, Arch. Math., 110:5 (2018), 459–466  crossref  mathscinet  zmath  isi  scopus
    10. H. Nozaki, Sh. Suda, “Complex spherical codes with three inner products”, Discret. Comput. Geom., 60:2 (2018), 294–317  crossref  mathscinet  isi  scopus
    11. E. Bannai, E. Bannai, H. Tanaka, Ya. Zhu, “Design theory from the viewpoint of algebraic combinatorics”, Graphs Comb., 33:1 (2017), 1–41  crossref  mathscinet  zmath  isi  scopus
    12. A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$”, Proc. Steklov Inst. Math. (Suppl.), 304:1 (2019), S112–S122  mathnet  mathnet  crossref  crossref  isi
    13. D. G. Mixon, “Unit norm tight frames in finite-dimensional spaces”, Finite Frame Theory: a Complete Introduction To Overcompleteness, Proceedings of Symposia in Applied Mathematics, 73, ed. K. Okoudjou, Amer. Math. Soc., 2016, 53–78  crossref  mathscinet  zmath  isi
    14. Proc. Steklov Inst. Math., 288 (2015), 189–202  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :132
    References:54
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025