Abstract:
Let $X$ be a tight $t$-design of dimension $n$, and let $t=5$ or $t=7$ (the open cases). An investigation of the lattice generated by $X$ by using arithmetic theory of quadratic forms allows one to exclude infinitely many values of $n$.
This publication is cited in the following 14 articles:
Yuchen Xiao, Xiaosheng Zhuang, “Spherical Framelets from Spherical Designs”, SIAM J. Imaging Sci., 16:4 (2023), 2072
de Laat D. Machado F.C. de Oliveira Filho F.M. Vallentin F., “K-Point Semidefinite Programming Bounds For Equiangular Lines”, Math. Program., 194:1-2 (2022), 533–567
Peter Boyvalenkov, Hiroshi Nozaki, Navid Safaei, “Rationality of the inner products of spherical s-distance t-designs for t ≥ 2s - 2, s ≥ 3”, Linear Algebra and its Applications, 646 (2022), 107
Iverson J.W. King E.J. Mixon D.G., “A Note on Tight Projective 2-Designs”, J. Comb Des., 29:12 (2021), 809–832
Bannai E. Bannai E. Xiang Z. Yu W.-H. Zhu Ya., “Classification of Spherical 2-Distance (4,2,1)-Designs By Solving Diophantine Equations”, Taiwan. J. Math., 25:1 (2021), 1–22
Boyvalenkov P. Stoyanova M., “Linear Programming Bounds For Covering Radius of Spherical Designs”, Results Math., 76:2 (2021), 95
Peter Boyvalenkov, Navid Safaei, 2021 XVII International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), 2021, 101
A. Glazyrin, W.-H. Yu, “Upper bounds for $s$-distance sets and equiangular lines”, Adv. Math., 330 (2018), 810–833
E. Bannai, D. Zhao, L. Zhu, Ya. Zhu, Y. Zhu, “Half of an antipodal spherical design”, Arch. Math., 110:5 (2018), 459–466
H. Nozaki, Sh. Suda, “Complex spherical codes with three inner products”, Discret. Comput. Geom., 60:2 (2018), 294–317
E. Bannai, E. Bannai, H. Tanaka, Ya. Zhu, “Design theory from the viewpoint of algebraic combinatorics”, Graphs Comb., 33:1 (2017), 1–41
A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$”, Proc. Steklov Inst. Math. (Suppl.), 304:1 (2019), S112–S122
D. G. Mixon, “Unit norm tight frames in finite-dimensional spaces”, Finite Frame Theory: a Complete Introduction To Overcompleteness, Proceedings of Symposia in Applied Mathematics, 73, ed. K. Okoudjou, Amer. Math. Soc., 2016, 53–78