Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2012, Volume 24, Issue 3, Pages 1–21 (Mi aa1282)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Optimal regularity and free boundary regularity for the Signorini problem

John Andersson

Mathematics Institute, University of Warwick, Coventry, UK
Full-text PDF (272 kB) Citations (4)
References:
Abstract: A proof of the optimal regularity and free boundary regularity is announced and informally discussed for the Signorini problem for the Lamé system. The result, which is the first of its kind for a system of equations, states that if $\mathbf u=(u^1,u^2,u^3)\in W^{1,2}(B_1^+:\mathbb R^3)$ minimizes
$$ J(\mathbf u)=\int_{B_1^+}|\nabla\mathbf u+\nabla^\bot \mathbf u|^2+\lambda(\operatorname{div}(\mathbf u))^2 $$
in the convex set
\begin{align*} K=\big\{\mathbf u&=(u^1,u^2,u^3)\in W^{1,2}(B_1^+:\mathbb R^3);\; u^3\ge0\textrm{ on }\Pi,\\ \mathbf u&=f\in C^\infty(\partial B_1)\textrm{ on }(\partial B_1)^+\big\}, \end{align*}
where, say, $\lambda\ge0$, then $\mathbf u\in C^{1,1/2}(B_{1/2}^+)$. Moreover, the free boundary, given by $\Gamma_\mathbf u=\partial\{x;\,u^3(x)=0,\,x_3=0\}\cap B_1$, will be a $C^{1,\alpha}$-graph close to points where $\mathbf u$ is nondegenerate. Historically, the problem is of some interest in that it is the first formulation of a variational inequality. A detailed version of this paper will appear in the near future.
Keywords: free boundary regularity, Signorini problem, optimal regularity, system of equations.
Received: 01.11.2011
English version:
St. Petersburg Mathematical Journal, 2013, Volume 24, Issue 3, Pages 371–386
DOI: https://doi.org/10.1090/S1061-0022-2013-01244-1
Bibliographic databases:
Document Type: Article
Language: English
Citation: John Andersson, “Optimal regularity and free boundary regularity for the Signorini problem”, Algebra i Analiz, 24:3 (2012), 1–21; St. Petersburg Math. J., 24:3 (2013), 371–386
Citation in format AMSBIB
\Bibitem{And12}
\by John~Andersson
\paper Optimal regularity and free boundary regularity for the Signorini problem
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 3
\pages 1--21
\mathnet{http://mi.mathnet.ru/aa1282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3014126}
\zmath{https://zbmath.org/?q=an:1272.49079}
\elib{https://elibrary.ru/item.asp?id=20730156}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 3
\pages 371--386
\crossref{https://doi.org/10.1090/S1061-0022-2013-01244-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331548200001}
\elib{https://elibrary.ru/item.asp?id=20838300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877638761}
Linking options:
  • https://www.mathnet.ru/eng/aa1282
  • https://www.mathnet.ru/eng/aa/v24/i3/p1
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024