Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2012, Volume 24, Issue 1, Pages 53–94 (Mi aa1269)  

This article is cited in 33 scientific papers (total in 33 papers)

Research Papers

On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains

Hongjie Donga, N. V. Krylovb, Xu Lib

a Division of Applied Mathematics, Brown University, Providence, RI, USA
b University of Minnesota, Minneapolis, MN, USA
References:
Abstract: The solvability in the Sobolev spaces $W^{1,2}_p$, $p>d+1$, of the terminal-boundary value problem is proved for a class of fully nonlinear parabolic equations, including parabolic Bellman's equations, in bounded cylindrical domains, in the case of VMO “coefficients”. The solvability in $W^2_p$, $p>d$, of the corresponding elliptic boundary-value problem is also obtained.
Keywords: vanishing mean oscillation, fully nonlinear elliptic and parabolic equations, Bellman's equations.
Received: 12.12.2010
English version:
St. Petersburg Mathematical Journal, 2013, Volume 24, Issue 1, Pages 39–69
DOI: https://doi.org/10.1090/S1061-0022-2012-01231-8
Bibliographic databases:
Document Type: Article
Language: English
Citation: Hongjie Dong, N. V. Krylov, Xu Li, “On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains”, Algebra i Analiz, 24:1 (2012), 53–94; St. Petersburg Math. J., 24:1 (2013), 39–69
Citation in format AMSBIB
\Bibitem{DonKryLi12}
\by Hongjie~Dong, N.~V.~Krylov, Xu~Li
\paper On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 1
\pages 53--94
\mathnet{http://mi.mathnet.ru/aa1269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013294}
\zmath{https://zbmath.org/?q=an:06208257}
\elib{https://elibrary.ru/item.asp?id=20730143}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 1
\pages 39--69
\crossref{https://doi.org/10.1090/S1061-0022-2012-01231-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326331900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871490924}
Linking options:
  • https://www.mathnet.ru/eng/aa1269
  • https://www.mathnet.ru/eng/aa/v24/i1/p53
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024