Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2011, Volume 23, Issue 3, Pages 150–174 (Mi aa1245)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

Parabolic equations with variably partially VMO coefficients

H. Dong

Division of Applied Mathematics, Brown University, Providence, RI, USA
Full-text PDF (293 kB) Citations (9)
References:
Abstract: The $W^{1,2}_p$-solvability of second-order parabolic equations in nondivergence form in the whole space is proved for $p\in(1,\infty)$. The leading coefficients are assumed to be measurable in one spatial direction and have vanishing mean oscillation (VMO) in the orthogonal directions and the time variable in each small parabolic cylinder with direction allowed to depend on the cylinder. This extends a recent result by Krylov for elliptic equations. The novelty in the current paper is that the restriction $p>2$ is removed.
Keywords: second-order equations, vanishing mean oscillation, partially VMO coefficients, Sobolev spaces.
Received: 20.01.2010
English version:
St. Petersburg Mathematical Journal, 2012, Volume 23, Issue 3, Pages 521–539
DOI: https://doi.org/10.1090/S1061-0022-2012-01206-9
Bibliographic databases:
Document Type: Article
Language: English
Citation: H. Dong, “Parabolic equations with variably partially VMO coefficients”, Algebra i Analiz, 23:3 (2011), 150–174; St. Petersburg Math. J., 23:3 (2012), 521–539
Citation in format AMSBIB
\Bibitem{Don11}
\by H.~Dong
\paper Parabolic equations with variably partially VMO coefficients
\jour Algebra i Analiz
\yr 2011
\vol 23
\issue 3
\pages 150--174
\mathnet{http://mi.mathnet.ru/aa1245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2896169}
\zmath{https://zbmath.org/?q=an:1252.35149}
\elib{https://elibrary.ru/item.asp?id=20730118}
\transl
\jour St. Petersburg Math. J.
\yr 2012
\vol 23
\issue 3
\pages 521--539
\crossref{https://doi.org/10.1090/S1061-0022-2012-01206-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304073500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871433088}
Linking options:
  • https://www.mathnet.ru/eng/aa1245
  • https://www.mathnet.ru/eng/aa/v23/i3/p150
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024