Abstract:
A Bernstein-type inequality for the standard Hardy space H2 in the unit disk D={z∈C:|z|<1} is considered for rational functions in D having at most n poles all outside of 1rD, 0<r<1. The asymptotic sharpness is shown as n→∞ and r→1.
Citation:
R. Zarouf, “Asymptotic sharpness of a Bernstein-type inequality for rational functions in H2”, Algebra i Analiz, 23:2 (2011), 147–161; St. Petersburg Math. J., 23:2 (2012), 309–319
\Bibitem{Zar11}
\by R.~Zarouf
\paper Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$
\jour Algebra i Analiz
\yr 2011
\vol 23
\issue 2
\pages 147--161
\mathnet{http://mi.mathnet.ru/aa1237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841678}
\zmath{https://zbmath.org/?q=an:1251.30061}
\elib{https://elibrary.ru/item.asp?id=20730109}
\transl
\jour St. Petersburg Math. J.
\yr 2012
\vol 23
\issue 2
\pages 309--319
\crossref{https://doi.org/10.1090/S1061-0022-2012-01198-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302454300006}
\elib{https://elibrary.ru/item.asp?id=20784642}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871452766}
Linking options:
https://www.mathnet.ru/eng/aa1237
https://www.mathnet.ru/eng/aa/v23/i2/p147
This publication is cited in the following 5 articles:
Anton Baranov, Rachid Zarouf, “H
∞ interpolation constrained by Beurling–Sobolev norms”, Moroccan Journal of Pure and Applied Analysis, 9:2 (2023), 157
Baranov A. Zarouf R., “A Model Space Approach To Some Classical Inequalities For Rational Functions”, J. Math. Anal. Appl., 418:1 (2014), 121–141
Baranov A. Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556
Zarouf R., “Effective H-Infinity Interpolation”, Houst. J. Math., 39:2 (2013), 487–514