Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2011, Volume 23, Issue 2, Pages 77–101 (Mi aa1235)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

On finite representability of lp-spaces in rearrangement invariant spaces

S. V. Astashkin

Samara State University, Samara, Russia
Full-text PDF (305 kB) Citations (7)
References:
Received: 07.10.2010
English version:
St. Petersburg Mathematical Journal, 2012, Volume 23, Issue 2, Pages 257–273
DOI: https://doi.org/10.1090/S1061-0022-2012-01196-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Astashkin, “On finite representability of lp-spaces in rearrangement invariant spaces”, Algebra i Analiz, 23:2 (2011), 77–101; St. Petersburg Math. J., 23:2 (2012), 257–273
Citation in format AMSBIB
\Bibitem{Ast11}
\by S.~V.~Astashkin
\paper On finite representability of $l_p$-spaces in rearrangement invariant spaces
\jour Algebra i Analiz
\yr 2011
\vol 23
\issue 2
\pages 77--101
\mathnet{http://mi.mathnet.ru/aa1235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841673}
\zmath{https://zbmath.org/?q=an:1245.46021}
\elib{https://elibrary.ru/item.asp?id=20730106}
\transl
\jour St. Petersburg Math. J.
\yr 2012
\vol 23
\issue 2
\pages 257--273
\crossref{https://doi.org/10.1090/S1061-0022-2012-01196-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302454300004}
\elib{https://elibrary.ru/item.asp?id=20488500}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871416211}
Linking options:
  • https://www.mathnet.ru/eng/aa1235
  • https://www.mathnet.ru/eng/aa/v23/i2/p77
  • This publication is cited in the following 7 articles:
    1. S. V. Astashkin, “On Lattice Properties of the Lorentz Spaces $L_{p,q}$”, Math. Notes, 113:1 (2023), 10–17  mathnet  crossref  crossref  mathscinet
    2. S. V. Astashkin, “Spectral properties of the dilation operator in rearrangement invariant spaces of fundamental type”, Siberian Math. J., 64:1 (2023), 1–12  mathnet  crossref  crossref
    3. Sergey V. Astashkin, Guillermo P. Curbera, “Symmetric finite representability of $\ell ^p$-spaces in rearrangement invariant spaces on [0, 1]”, Rev Mat Complut, 2023  crossref
    4. Astashkin S.V., “Symmetric Finite Representability of l(P)-Spaces in Rearrangement Invariant Spaces on (0, Infinity)”, Math. Ann., 383:3-4 (2022), 1489–1520  crossref  isi
    5. Astashkin V S., “A Characterization of l(P)-Spaces Symmetrically Finitely Represented in Symmetric Sequence Spaces”, Banach J. Math. Anal., 16:2 (2022), 30  crossref  mathscinet  isi
    6. S. V. Astashkin, “Symmetric finite representability of $\ell^p$ in Orlicz spaces”, Vestn. SamU. Estestvennonauchn. ser., 26:4 (2020), 15–24  mathnet  crossref
    7. Astashkin S., Sukochev F., Wong Ch.P., “Disjointification of martingale differences and conditionally independent random variables with some applications”, Studia Math., 205:2 (2011), 171–200  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :93
    References:58
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025