Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 6, Pages 3–42 (Mi aa1211)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

A problem with an obstacle that goes out to the boundary of the domain for a class of quadratic functionals on $\mathbb R^n$

A. A. Arkhipova

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Full-text PDF (468 kB) Citations (1)
References:
Abstract: A variational problem with obstacle is studied for a quadratic functional defined on vector-valued functions $u\colon\Omega\to\mathbb R^N$, $N>1$. It is assumed that the nondiagonal matrix that determines the quadratic form of the integrand depends on the solution and is “split”. The role of the obstacle is played by a closed (possibly, noncompact) set $\mathcal K$ in $\mathbb R^N$ or a smooth hypersurface $S$. It is assumed that $u(x)\in\mathcal K$ or $u(x)\in S$ a.e. on $\Omega$. This is a generalization of a scalar problem with an obstacle that goes out to the boundary of the domain. It is proved that the solutions of the variational problems in question are partially smooth in $\overline\Omega$ and that the singular set $\Sigma$ of the solution satisfies $H_{n-2}(\Sigma)=0$.
Keywords: variational problem, quadratic functional, nondiagonal matrix, Signorini condition.
Received: 07.04.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 6, Pages 847–875
DOI: https://doi.org/10.1090/S1061-0022-2011-01172-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Arkhipova, “A problem with an obstacle that goes out to the boundary of the domain for a class of quadratic functionals on $\mathbb R^n$”, Algebra i Analiz, 22:6 (2010), 3–42; St. Petersburg Math. J., 22:6 (2011), 847–875
Citation in format AMSBIB
\Bibitem{Ark10}
\by A.~A.~Arkhipova
\paper A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 3--42
\mathnet{http://mi.mathnet.ru/aa1211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2798764}
\zmath{https://zbmath.org/?q=an:1232.35043}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 847--875
\crossref{https://doi.org/10.1090/S1061-0022-2011-01172-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862640164}
Linking options:
  • https://www.mathnet.ru/eng/aa1211
  • https://www.mathnet.ru/eng/aa/v22/i6/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:601
    Full-text PDF :151
    References:89
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024