Abstract:
Compact metric spaces that admit intrinsic isometries to the Euclidean d-space are considered. Roughly, the main result states that the class of such spaces coincides with the class of inverse limits of Euclidean d-polyhedra.
Lytchak A. Wenger S., “Intrinsic Structure of Minimal Discs in Metric Spaces”, Geom. Topol., 22:1 (2018), 591–644
Lytchak A., Wenger S., “Isoperimetric Characterization of Upper Curvature Bounds”, Acta Math., 221:1 (2018), 159–202
Barry Minemyer, “Simplicial isometric embeddings of polyhedra”, Mosc. Math. J., 17:1 (2017), 79–95
Boronski J.P., Kupka J., “the Topology and Dynamics of the Hyperspaces of Normal Fuzzy Sets and Their Inverse Limit Spaces”, Fuzzy Sets Syst., 321 (2017), 90–100
Minemyer B., “Approximating Continuous Maps By Isometries”, N. Y. J. Math., 22 (2016), 741–753
A. Petrunin, A. Yashinski, “Piecewise distance preserving maps”, St. Petersburg Math. J., 27:1 (2016), 155–175
Minemyer B., “Isometric Embeddings of Polyhedra Into Euclidean Space”, J. Topol. Anal., 7:4 (2015), 677–692
Kirchheim B., Spadaro E., Szekelyhidi Jr. Laszlo, “Equidimensional Isometric Maps”, Comment. Math. Helv., 90:4 (2015), 761–798
Benjamini I., Shamov A., “Bi-Lipschitz Bijections of Z”, Anal. Geom. Metr. Spaces, 3:1 (2015), 313–324
Le Donne E., “Lipschitz and Path Isometric Embeddings of Metric Spaces”, Geod. Dedic., 166:1 (2013), 47–66