Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 5, Pages 1–48 (Mi aa1203)  

This article is cited in 23 scientific papers (total in 23 papers)

Research Papers

Spectral estimates for a periodic fourth-order operator

A. V. Badanina, E. L. Korotyaevb

a Arkhangelsk State Technical University, Arkhangelsk, Russia
b School of Mathematics, Cardiff University, Cardiff, UK
References:
Abstract: The operator $H=\frac{d^4}{dt^4}+\frac d{dt}p\frac d{dt}+q$ with periodic coefficients $p,q$ on the real line is considered. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. The following statements are proved: 1) the endpoints of gaps are periodic or antiperiodic eigenvalues or branch points of the Lyapunov function, and moreover, their asymptotic behavior at high energy is found; 2) the spectrum of $H$ at high energy has multiplicity two; 3) if $p$ belongs to a certain class, then for any $q$ the spectrum of $H$ has infinitely many gaps, and all branch points of the Lyapunov function, except for a finite number of them, are real and negative; 4) if $q=0$ and $p\to0$, then at the beginning of the spectrum there is a small spectral band of multiplicity 4, and its asymptotic behavior is found; the remaining spectrum has multiplicity 2.
Keywords: periodic differential operator, spectral bands, spectral asymptotics.
Received: 11.03.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 5, Pages 703–736
DOI: https://doi.org/10.1090/S1061-0022-2011-01164-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Badanin, E. L. Korotyaev, “Spectral estimates for a periodic fourth-order operator”, Algebra i Analiz, 22:5 (2010), 1–48; St. Petersburg Math. J., 22:5 (2011), 703–736
Citation in format AMSBIB
\Bibitem{BadKor10}
\by A.~V.~Badanin, E.~L.~Korotyaev
\paper Spectral estimates for a~periodic fourth-order operator
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 5
\pages 1--48
\mathnet{http://mi.mathnet.ru/aa1203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2828825}
\zmath{https://zbmath.org/?q=an:1230.34071}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 5
\pages 703--736
\crossref{https://doi.org/10.1090/S1061-0022-2011-01164-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295022600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858263427}
Linking options:
  • https://www.mathnet.ru/eng/aa1203
  • https://www.mathnet.ru/eng/aa/v22/i5/p1
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:682
    Full-text PDF :190
    References:121
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024