Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 4, Pages 214–231 (Mi aa1201)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

The quasinormed Neumann–Schatten ideals and embedding theorems for the generalized Lions–Peetre spaces of means

V. I. Ovchinnikov

Voronezh State University, Voronezh, Russia
Full-text PDF (280 kB) Citations (3)
References:
Abstract: For the spaces $\varphi(X_0,X_1)_{p_0,p_1}$, which generalize the spaces of means introduced by Lions and Peetre to the case of functional parameters, necessary and sufficient conditions are found for embedding when all parameters (the function $\varphi$ and the numbers $1\leq p_0$, $p_1\leq\infty)$ vary. The proof involves a description of generalized Lions–Peetre spaces in terms of orbits and co-orbits of von Neumann–Schatten ideals (including quasinormed ideals).
Keywords: embedding theorems, method of means, functional parameter, generalized spaces.
Received: 20.05.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 4, Pages 669–681
DOI: https://doi.org/10.1090/S1061-0022-2011-01162-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Ovchinnikov, “The quasinormed Neumann–Schatten ideals and embedding theorems for the generalized Lions–Peetre spaces of means”, Algebra i Analiz, 22:4 (2010), 214–231; St. Petersburg Math. J., 22:4 (2011), 669–681
Citation in format AMSBIB
\Bibitem{Ovc10}
\by V.~I.~Ovchinnikov
\paper The quasinormed Neumann--Schatten ideals and embedding theorems for the generalized Lions--Peetre spaces of means
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 4
\pages 214--231
\mathnet{http://mi.mathnet.ru/aa1201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768965}
\zmath{https://zbmath.org/?q=an:1232.46066}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 4
\pages 669--681
\crossref{https://doi.org/10.1090/S1061-0022-2011-01162-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292945500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871366761}
Linking options:
  • https://www.mathnet.ru/eng/aa1201
  • https://www.mathnet.ru/eng/aa/v22/i4/p214
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:471
    Full-text PDF :99
    References:64
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024