Abstract:
The equation −Δpu=uq−1−Δpu=uq−1 with zero Dirichlet condition on the boundary is considered in a three-dimensional spherical layer. The existence of arbitrarily many distinct positive solutions in a sufficiently thin layer is proved.
Keywords:pp-Laplacian, existence of many solutions.
Citation:
S. B. Kolonitskiǐ, “Multiplicity of solutions of the Dirichlet problem for an equation with the pp-Laplacian in a three-dimensional spherical layer”, Algebra i Analiz, 22:3 (2010), 206–221; St. Petersburg Math. J., 22:3 (2011), 485–495
\Bibitem{Kol10}
\by S.~B.~Kolonitski{\v\i}
\paper Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 3
\pages 206--221
\mathnet{http://mi.mathnet.ru/aa1193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729947}
\zmath{https://zbmath.org/?q=an:1219.35116}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 3
\pages 485--495
\crossref{https://doi.org/10.1090/S1061-0022-2011-01154-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292220800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871369409}
Linking options:
https://www.mathnet.ru/eng/aa1193
https://www.mathnet.ru/eng/aa/v22/i3/p206
This publication is cited in the following 8 articles:
D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1
Bobkov V., Kolonitskii S., “On Qualitative Properties of Solutions For Elliptic Problems With the P-Laplacian Through Domain Perturbations”, Commun. Partial Differ. Equ., 45:3 (2020), 230–252
Bobkov V., Kolonitskii S., “Second-Order Derivative of Domain-Dependent Functionals Along Nehari Manifold Trajectories”, ESAIM-Control OPtim. Calc. Var., 26 (2020), 48
Enin A., “Multiplicity of Positive Solutions For a Critical Quasilinear Neumann Problem”, Arch. Math., 109:3 (2017), 263–272
N. S. Ustinov, “Multiplicity of positive solutions to the boundary value problems for fractional Laplacians”, J. Math. Sci. (N. Y.), 236:4 (2019), 446–460
A. I. Nazarov, B. O. Neterebskii, “The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality”, J. Math. Sci. (N. Y.), 224:3 (2017), 448–455
S. B. Kolonitskii, “Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian”, Funct. Anal. Appl., 49:2 (2015), 151–154
A. I. Enin, A. I. Nazarov, “Multiplicity of Solutions to the Quasilinear Neumann Problem in the 3-Dimensional Case”, J Math Sci, 207:2 (2015), 206