Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 3, Pages 206–221 (Mi aa1193)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Multiplicity of solutions of the Dirichlet problem for an equation with the pp-Laplacian in a three-dimensional spherical layer

S. B. Kolonitskiĭ

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Full-text PDF (640 kB) Citations (8)
References:
Abstract: The equation Δpu=uq1Δpu=uq1 with zero Dirichlet condition on the boundary is considered in a three-dimensional spherical layer. The existence of arbitrarily many distinct positive solutions in a sufficiently thin layer is proved.
Keywords: pp-Laplacian, existence of many solutions.
Received: 22.09.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 3, Pages 485–495
DOI: https://doi.org/10.1090/S1061-0022-2011-01154-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. B. Kolonitskiǐ, “Multiplicity of solutions of the Dirichlet problem for an equation with the pp-Laplacian in a three-dimensional spherical layer”, Algebra i Analiz, 22:3 (2010), 206–221; St. Petersburg Math. J., 22:3 (2011), 485–495
Citation in format AMSBIB
\Bibitem{Kol10}
\by S.~B.~Kolonitski{\v\i}
\paper Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 3
\pages 206--221
\mathnet{http://mi.mathnet.ru/aa1193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729947}
\zmath{https://zbmath.org/?q=an:1219.35116}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 3
\pages 485--495
\crossref{https://doi.org/10.1090/S1061-0022-2011-01154-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292220800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871369409}
Linking options:
  • https://www.mathnet.ru/eng/aa1193
  • https://www.mathnet.ru/eng/aa/v22/i3/p206
  • This publication is cited in the following 8 articles:
    1. D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1  crossref
    2. Bobkov V., Kolonitskii S., “On Qualitative Properties of Solutions For Elliptic Problems With the P-Laplacian Through Domain Perturbations”, Commun. Partial Differ. Equ., 45:3 (2020), 230–252  crossref  mathscinet  isi  scopus
    3. Bobkov V., Kolonitskii S., “Second-Order Derivative of Domain-Dependent Functionals Along Nehari Manifold Trajectories”, ESAIM-Control OPtim. Calc. Var., 26 (2020), 48  crossref  mathscinet  isi  scopus
    4. Enin A., “Multiplicity of Positive Solutions For a Critical Quasilinear Neumann Problem”, Arch. Math., 109:3 (2017), 263–272  crossref  mathscinet  zmath  isi  scopus
    5. N. S. Ustinov, “Multiplicity of positive solutions to the boundary value problems for fractional Laplacians”, J. Math. Sci. (N. Y.), 236:4 (2019), 446–460  mathnet  crossref
    6. A. I. Nazarov, B. O. Neterebskii, “The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality”, J. Math. Sci. (N. Y.), 224:3 (2017), 448–455  mathnet  crossref  mathscinet
    7. S. B. Kolonitskii, “Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian”, Funct. Anal. Appl., 49:2 (2015), 151–154  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. A. I. Enin, A. I. Nazarov, “Multiplicity of Solutions to the Quasilinear Neumann Problem in the 3-Dimensional Case”, J Math Sci, 207:2 (2015), 206  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:721
    Full-text PDF :236
    References:105
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025