Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 2, Pages 156–182 (Mi aa118)  

This article is cited in 14 scientific papers (total in 14 papers)

Research Papers

Classification of the group actions on the real line and circle

A. V. Malyutin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The group actions on the real line and circle are classified. It is proved that each minimal continuous action of a group on the circle is either a conjugate of an isometric action, or a finite cover of a proximal action. It is also shown that each minimal continuous action of a group on the real line either is conjugate to an isometric action, or is a proximal action, or is a cover of a proximal action on the circle. As a corollary, it is proved that a continuous action of a group on the circle either has a finite orbit, or is semiconjugate to a minimal action on the circle that is either isometric or proximal. As a consequence, a new proof of the Ghys-Margulis alternative is obtained.
Keywords: Circle, line, group of homeomorphisms, action, proximal, distal, semiconjugacy.
Received: 16.06.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 2, Pages 279–296
DOI: https://doi.org/10.1090/S1061-0022-08-00999-0
Bibliographic databases:
Document Type: Article
MSC: Primary 54H15; Secondary 57S25, 57M60, 54H20, 37E05, 37E10
Language: Russian
Citation: A. V. Malyutin, “Classification of the group actions on the real line and circle”, Algebra i Analiz, 19:2 (2007), 156–182; St. Petersburg Math. J., 19:2 (2008), 279–296
Citation in format AMSBIB
\Bibitem{Mal07}
\by A.~V.~Malyutin
\paper Classification of the group actions on the real line and circle
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 156--182
\mathnet{http://mi.mathnet.ru/aa118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333902}
\zmath{https://zbmath.org/?q=an:1209.37009}
\elib{https://elibrary.ru/item.asp?id=9487753}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 279--296
\crossref{https://doi.org/10.1090/S1061-0022-08-00999-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653200009}
Linking options:
  • https://www.mathnet.ru/eng/aa118
  • https://www.mathnet.ru/eng/aa/v19/i2/p156
  • This publication is cited in the following 14 articles:
    1. Christian Bonatti, João Carnevale, Michele Triestino, “Non-locally discrete actions on the circle with at most N fixed points”, Math. Z., 307:1 (2024)  crossref
    2. Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino, “A realisation result for moduli spaces of group actions on the line”, Journal of Topology, 17:4 (2024)  crossref
    3. Le Boudec A., Bon N.M., “Triple Transitivity and Non-Free Actions in Dimension One”, J. Lond. Math. Soc.-Second Ser., 105:2 (2022), 884–908  crossref  mathscinet  isi
    4. Ba I., Clay A., “The Space of Circular Orderings and Semiconjugacy”, J. Algebra, 586 (2021), 582–606  crossref  mathscinet  isi
    5. Haj Salem A., “Equicontinuous Actions on Semi-Locally Connected and Local Dendrites”, Qual. Theor. Dyn. Syst., 20:2 (2021), 39  crossref  mathscinet  isi  scopus
    6. Shi E., Zhou L., “Topological Transitivity and Wandering Intervals For Group Actions on the Line R”, Group. Geom. Dyn., 13:1 (2019), 293–307  crossref  mathscinet  zmath  isi  scopus
    7. A. V. Malyutin, “The Rotation Number Integer Quantization Effect in Braid Groups”, Proc. Steklov Inst. Math., 305 (2019), 182–194  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Dirbak M., Hric R., Malicky P., Snoha L'ubomir, Spitalsky V., “Minimality For Actions of Abelian Semigroups on Compact Spaces With a Free Interval”, Ergod. Theory Dyn. Syst., 39:11 (2019), PII S0143385718000044, 2968–2982  crossref  mathscinet  isi
    9. Glasner E., Megrelishvili M., “Circularly Ordered Dynamical Systems”, Mon.heft. Math., 185:3 (2018), 415–441  crossref  mathscinet  zmath  isi
    10. Salem A.H., Hattab H., “Group Action on Local Dendrites”, Topology Appl., 247 (2018), 91–99  crossref  mathscinet  zmath  isi  scopus
    11. Hattab H., “Flows of Locally Finite Graphs”, Boll. Unione Mat. Ital., 10:4 (2017), 671–679  crossref  mathscinet  zmath  isi
    12. Deroin B., Kleptsyn V., Navas A., Parwani K., “Symmetric Random Walks on Homeo(+)(R)”, Ann. Probab., 41:3B (2013), 2066–2089  crossref  mathscinet  zmath  isi
    13. A. V. Malyutin, “Groups acting on dendrons”, J. Math. Sci. (N. Y.), 212:5 (2016), 558–565  mathnet  crossref
    14. Hattab H., “Pointwise recurrent one-dimensional flows”, Dyn. Syst., 26:1 (2011), 77–83  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :307
    References:82
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025