Abstract:
The group actions on the real line and circle are classified. It is proved that each minimal continuous action of a group on the circle is either a conjugate of an isometric action, or a finite cover of a proximal action. It is also shown that each minimal continuous action of a group on the real line either is conjugate to an isometric action, or is a proximal action, or is a cover of a proximal action on the circle. As a corollary, it is proved that a continuous action of a group on the circle either has a finite orbit, or is semiconjugate to a minimal action on the circle that is either isometric or proximal. As a consequence, a new proof of the Ghys-Margulis alternative is obtained.
Keywords:
Circle, line, group of homeomorphisms, action, proximal, distal, semiconjugacy.
Citation:
A. V. Malyutin, “Classification of the group actions on the real line and circle”, Algebra i Analiz, 19:2 (2007), 156–182; St. Petersburg Math. J., 19:2 (2008), 279–296
\Bibitem{Mal07}
\by A.~V.~Malyutin
\paper Classification of the group actions on the real line and circle
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 156--182
\mathnet{http://mi.mathnet.ru/aa118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333902}
\zmath{https://zbmath.org/?q=an:1209.37009}
\elib{https://elibrary.ru/item.asp?id=9487753}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 279--296
\crossref{https://doi.org/10.1090/S1061-0022-08-00999-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653200009}
Linking options:
https://www.mathnet.ru/eng/aa118
https://www.mathnet.ru/eng/aa/v19/i2/p156
This publication is cited in the following 14 articles:
Christian Bonatti, João Carnevale, Michele Triestino, “Non-locally discrete actions on the circle with at most N fixed points”, Math. Z., 307:1 (2024)
Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino, “A realisation result for moduli spaces of group actions on the line”, Journal of Topology, 17:4 (2024)
Le Boudec A., Bon N.M., “Triple Transitivity and Non-Free Actions in Dimension One”, J. Lond. Math. Soc.-Second Ser., 105:2 (2022), 884–908
Ba I., Clay A., “The Space of Circular Orderings and Semiconjugacy”, J. Algebra, 586 (2021), 582–606
Haj Salem A., “Equicontinuous Actions on Semi-Locally Connected and Local Dendrites”, Qual. Theor. Dyn. Syst., 20:2 (2021), 39
Shi E., Zhou L., “Topological Transitivity and Wandering Intervals For Group Actions on the Line R”, Group. Geom. Dyn., 13:1 (2019), 293–307
A. V. Malyutin, “The Rotation Number Integer Quantization Effect in Braid Groups”, Proc. Steklov Inst. Math., 305 (2019), 182–194
Dirbak M., Hric R., Malicky P., Snoha L'ubomir, Spitalsky V., “Minimality For Actions of Abelian Semigroups on Compact Spaces With a Free Interval”, Ergod. Theory Dyn. Syst., 39:11 (2019), PII S0143385718000044, 2968–2982
Glasner E., Megrelishvili M., “Circularly Ordered Dynamical Systems”, Mon.heft. Math., 185:3 (2018), 415–441
Salem A.H., Hattab H., “Group Action on Local Dendrites”, Topology Appl., 247 (2018), 91–99
Hattab H., “Flows of Locally Finite Graphs”, Boll. Unione Mat. Ital., 10:4 (2017), 671–679
Deroin B., Kleptsyn V., Navas A., Parwani K., “Symmetric Random Walks on Homeo(+)(R)”, Ann. Probab., 41:3B (2013), 2066–2089
A. V. Malyutin, “Groups acting on dendrons”, J. Math. Sci. (N. Y.), 212:5 (2016), 558–565