Abstract:
Let Cn be the nth generation in the construction of the middle-half Cantor set. The Cartesian square Kn of Cn consists of 4n squares of side-length 4−n. The chance that a long needle thrown at random in the unit square will meet Kn is essentially the average length of the projections of Kn, also known as the Favard length of Kn. A classical theorem of Besicovitch implies that the Favard length of Kn tends to zero. It is still an open problem to determine its exact rate of decay. Until recently, the only explicit upper bound was exp(−clog∗n), due to Peres and Solomyak (log∗n is the number of times one needs to take log to obtain a number less than 1 starting from n). In the paper, a power law bound is obtained by combining analytic and combinatorial ideas.
Keywords:
Favard length, four-corner Cantor set, Buffon's needle.
Citation:
F. Nazarov, Y. Peres, A. Volberg, “The power law for the Buffon needle probability of the four-corner Cantor set”, Algebra i Analiz, 22:1 (2010), 82–97; St. Petersburg Math. J., 22:1 (2011), 61–72
\Bibitem{NazPerVol10}
\by F.~Nazarov, Y.~Peres, A.~Volberg
\paper The power law for the Buffon needle probability of the four-corner Cantor set
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 1
\pages 82--97
\mathnet{http://mi.mathnet.ru/aa1172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641082}
\zmath{https://zbmath.org/?q=an:1213.28006}
\elib{https://elibrary.ru/item.asp?id=20730042}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 1
\pages 61--72
\crossref{https://doi.org/10.1090/S1061-0022-2010-01133-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286864400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871360487}
Linking options:
https://www.mathnet.ru/eng/aa1172
https://www.mathnet.ru/eng/aa/v22/i1/p82
This publication is cited in the following 13 articles:
Dimitris Vardakis, Alexander Volberg, “The Buffon's needle problem for random planar disk-like Cantor sets”, Journal of Mathematical Analysis and Applications, 529:2 (2024), 127622
Davey B., Taylor K., “A Quantification of a Besicovitch Non-Linear Projection Theorem Via Multiscale Analysis”, J. Geom. Anal., 32:4 (2022), 138
Orponen T., “Plenty of Big Projections Imply Big Pieces of Lipschitz Graphs”, Invent. Math., 226:2 (2021), 653–709
Zhang Sh., “The Exact Power Law For Buffon'S Needle Landing Near Some Random Cantor Sets”, Rev. Mat. Iberoam., 36:2 (2020), 537–548
Alex Iosevich, “Fourier Analysis and Hausdorff Dimension by Pertti Mattila”, Math Intelligencer, 41:1 (2019), 83
Bond M., Laba I., Zahl J., “Quantitative Visibility Estimates For Unrectifiable Sets in the Plane”, Trans. Am. Math. Soc., 368:8 (2016), 5475–5513
Izabella Łaba, Abel Symposia, 9, Operator-Related Function Theory and Time-Frequency Analysis, 2015, 117
Bond M., Laba I., Volberg A., “Buffon's Needle Estimates For Rational Product Cantor Sets”, Am. J. Math., 136:2 (2014), 357–391
Oberlin D.M., “Some Toy Furstenberg Sets and Projections of the Four-Corner Cantor Set”, Proc. Amer. Math. Soc., 142:4 (2014), 1209–1215
A. L. Volberg, V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Russian Math. Surveys, 68:6 (2013), 973–1026
Burdzy K., Kulczycki T., “Invisibility via Reflecting Coating”, J. Lond. Math. Soc.-Second Ser., 88:2 (2013), 359–374
St. Petersburg Math. J., 24:6 (2013), 903–938
Bond M., Volberg A., “Buffon's Needle Landing Near Besicovitch Irregular Self-Similar Sets”, Indiana Univ. Math. J., 61:6 (2012), 2085–2109