Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 1, Pages 82–97 (Mi aa1172)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

The power law for the Buffon needle probability of the four-corner Cantor set

F. Nazarova, Y. Peresbc, A. Volbergde

a Department of Mathematics, University of Wisconsin
b Departments of Statistics and Mathematics, University of California, Berkeley
c Microsoft Research, Redmond
d The University of Edinburgh
e Department of Mathematics, Michigan State University
References:
Abstract: Let Cn be the nth generation in the construction of the middle-half Cantor set. The Cartesian square Kn of Cn consists of 4n squares of side-length 4n. The chance that a long needle thrown at random in the unit square will meet Kn is essentially the average length of the projections of Kn, also known as the Favard length of Kn. A classical theorem of Besicovitch implies that the Favard length of Kn tends to zero. It is still an open problem to determine its exact rate of decay. Until recently, the only explicit upper bound was exp(clogn), due to Peres and Solomyak (logn is the number of times one needs to take log to obtain a number less than 1 starting from n). In the paper, a power law bound is obtained by combining analytic and combinatorial ideas.
Keywords: Favard length, four-corner Cantor set, Buffon's needle.
Received: 20.10.2008
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 1, Pages 61–72
DOI: https://doi.org/10.1090/S1061-0022-2010-01133-6
Bibliographic databases:
Document Type: Article
MSC: Primary 28A80; Secondary 28A75, 60D05, 28A78
Language: English
Citation: F. Nazarov, Y. Peres, A. Volberg, “The power law for the Buffon needle probability of the four-corner Cantor set”, Algebra i Analiz, 22:1 (2010), 82–97; St. Petersburg Math. J., 22:1 (2011), 61–72
Citation in format AMSBIB
\Bibitem{NazPerVol10}
\by F.~Nazarov, Y.~Peres, A.~Volberg
\paper The power law for the Buffon needle probability of the four-corner Cantor set
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 1
\pages 82--97
\mathnet{http://mi.mathnet.ru/aa1172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641082}
\zmath{https://zbmath.org/?q=an:1213.28006}
\elib{https://elibrary.ru/item.asp?id=20730042}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 1
\pages 61--72
\crossref{https://doi.org/10.1090/S1061-0022-2010-01133-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286864400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871360487}
Linking options:
  • https://www.mathnet.ru/eng/aa1172
  • https://www.mathnet.ru/eng/aa/v22/i1/p82
  • This publication is cited in the following 13 articles:
    1. Dimitris Vardakis, Alexander Volberg, “The Buffon's needle problem for random planar disk-like Cantor sets”, Journal of Mathematical Analysis and Applications, 529:2 (2024), 127622  crossref
    2. Davey B., Taylor K., “A Quantification of a Besicovitch Non-Linear Projection Theorem Via Multiscale Analysis”, J. Geom. Anal., 32:4 (2022), 138  crossref  mathscinet  isi
    3. Orponen T., “Plenty of Big Projections Imply Big Pieces of Lipschitz Graphs”, Invent. Math., 226:2 (2021), 653–709  crossref  mathscinet  isi
    4. Zhang Sh., “The Exact Power Law For Buffon'S Needle Landing Near Some Random Cantor Sets”, Rev. Mat. Iberoam., 36:2 (2020), 537–548  crossref  mathscinet  isi  scopus
    5. Alex Iosevich, “Fourier Analysis and Hausdorff Dimension by Pertti Mattila”, Math Intelligencer, 41:1 (2019), 83  crossref
    6. Bond M., Laba I., Zahl J., “Quantitative Visibility Estimates For Unrectifiable Sets in the Plane”, Trans. Am. Math. Soc., 368:8 (2016), 5475–5513  crossref  mathscinet  zmath  isi  scopus
    7. Izabella Łaba, Abel Symposia, 9, Operator-Related Function Theory and Time-Frequency Analysis, 2015, 117  crossref
    8. Bond M., Laba I., Volberg A., “Buffon's Needle Estimates For Rational Product Cantor Sets”, Am. J. Math., 136:2 (2014), 357–391  crossref  mathscinet  zmath  isi  scopus
    9. Oberlin D.M., “Some Toy Furstenberg Sets and Projections of the Four-Corner Cantor Set”, Proc. Amer. Math. Soc., 142:4 (2014), 1209–1215  crossref  mathscinet  zmath  isi  scopus
    10. A. L. Volberg, V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Russian Math. Surveys, 68:6 (2013), 973–1026  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Burdzy K., Kulczycki T., “Invisibility via Reflecting Coating”, J. Lond. Math. Soc.-Second Ser., 88:2 (2013), 359–374  crossref  mathscinet  zmath  isi  scopus
    12. St. Petersburg Math. J., 24:6 (2013), 903–938  mathnet  crossref  mathscinet  zmath  isi  elib
    13. Bond M., Volberg A., “Buffon's Needle Landing Near Besicovitch Irregular Self-Similar Sets”, Indiana Univ. Math. J., 61:6 (2012), 2085–2109  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:658
    Full-text PDF :182
    References:75
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025