Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 1, Pages 82–97 (Mi aa1172)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

The power law for the Buffon needle probability of the four-corner Cantor set

F. Nazarova, Y. Peresbc, A. Volbergde

a Department of Mathematics, University of Wisconsin
b Departments of Statistics and Mathematics, University of California, Berkeley
c Microsoft Research, Redmond
d The University of Edinburgh
e Department of Mathematics, Michigan State University
References:
Abstract: Let $\mathcal C_n$ be the $n$th generation in the construction of the middle-half Cantor set. The Cartesian square $\mathcal K_n$ of $\mathcal C_n$ consists of $4^n$ squares of side-length $4^{-n}$. The chance that a long needle thrown at random in the unit square will meet $\mathcal K_n$ is essentially the average length of the projections of $\mathcal K_n$, also known as the Favard length of $\mathcal K_n$. A classical theorem of Besicovitch implies that the Favard length of $\mathcal K_n$ tends to zero. It is still an open problem to determine its exact rate of decay. Until recently, the only explicit upper bound was $\exp(-c\log_*n)$, due to Peres and Solomyak ($\log_*n$ is the number of times one needs to take log to obtain a number less than 1 starting from $n$). In the paper, a power law bound is obtained by combining analytic and combinatorial ideas.
Keywords: Favard length, four-corner Cantor set, Buffon's needle.
Received: 20.10.2008
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 1, Pages 61–72
DOI: https://doi.org/10.1090/S1061-0022-2010-01133-6
Bibliographic databases:
Document Type: Article
MSC: Primary 28A80; Secondary 28A75, 60D05, 28A78
Language: English
Citation: F. Nazarov, Y. Peres, A. Volberg, “The power law for the Buffon needle probability of the four-corner Cantor set”, Algebra i Analiz, 22:1 (2010), 82–97; St. Petersburg Math. J., 22:1 (2011), 61–72
Citation in format AMSBIB
\Bibitem{NazPerVol10}
\by F.~Nazarov, Y.~Peres, A.~Volberg
\paper The power law for the Buffon needle probability of the four-corner Cantor set
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 1
\pages 82--97
\mathnet{http://mi.mathnet.ru/aa1172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641082}
\zmath{https://zbmath.org/?q=an:1213.28006}
\elib{https://elibrary.ru/item.asp?id=20730042}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 1
\pages 61--72
\crossref{https://doi.org/10.1090/S1061-0022-2010-01133-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286864400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871360487}
Linking options:
  • https://www.mathnet.ru/eng/aa1172
  • https://www.mathnet.ru/eng/aa/v22/i1/p82
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024