Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 6, Pages 227–240 (Mi aa1168)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Approximation of discrete functions and size of spectrum

A. Olevskiĭa, A. Ulanovskiĭb

a School of Mathematics, Tel Aviv University, Ramat Aviv, Israel
b Stavanger University, Stavanger, Norway
Full-text PDF (255 kB) Citations (5)
References:
Abstract: Let $\Lambda\subset\mathbb R$ be a uniformly discrete sequence and $S\subset\mathbb R$ a compact set. It is proved that if there exists a bounded sequence of functions in the Paley–Wiener space $PW_S$ that approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then the measure of $S$ cannot be less than $2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. A similar estimate holds true when the norms of approximating functions have a moderate growth; the corresponding sharp growth restriction is found.
Keywords: Paley–Wiener space, Bernstein space, set of interpolation, approximation of discrete functions.
Received: 20.08.2009
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 6, Pages 1015–1025
DOI: https://doi.org/10.1090/S1061-0022-2010-01129-4
Bibliographic databases:
Document Type: Article
MSC: 30D15, 42A16
Language: English
Citation: A. Olevskiǐ, A. Ulanovskiǐ, “Approximation of discrete functions and size of spectrum”, Algebra i Analiz, 21:6 (2009), 227–240; St. Petersburg Math. J., 21:6 (2010), 1015–1025
Citation in format AMSBIB
\Bibitem{OleUla09}
\by A.~Olevski{\v\i}, A.~Ulanovski{\v\i}
\paper Approximation of discrete functions and size of spectrum
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 6
\pages 227--240
\mathnet{http://mi.mathnet.ru/aa1168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604548}
\zmath{https://zbmath.org/?q=an:1207.30038}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 6
\pages 1015--1025
\crossref{https://doi.org/10.1090/S1061-0022-2010-01129-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284238100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959573539}
Linking options:
  • https://www.mathnet.ru/eng/aa1168
  • https://www.mathnet.ru/eng/aa/v21/i6/p227
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024