Abstract:
Let Bn denote the unit ball in Cn, n⩾1. Given α>0, let Kα(n) denote the class of functions defined for z∈Bn by integrating the kernel (1−⟨z,ζ⟩)−α against a complex-valued Borel measure on the sphere {ζ∈Cn:|ζ|=1}. The families Kα(1) of fractional Cauchy transforms have been investigated intensively by several authors. In the paper, various properties of Kα(n), n⩾2, are studied. In particular, relations between Kα(n) and other spaces of holomorphic functions in the ball are obtained. Also, pointwise multipliers for the spaces Kα(n) are investigated.
Citation:
E. S. Dubtsov, “Families of fractional Cauchy transforms in the ball”, Algebra i Analiz, 21:6 (2009), 151–181; St. Petersburg Math. J., 21:6 (2010), 957–978
\Bibitem{Dub09}
\by E.~S.~Dubtsov
\paper Families of fractional Cauchy transforms in the ball
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 6
\pages 151--181
\mathnet{http://mi.mathnet.ru/aa1165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604545}
\zmath{https://zbmath.org/?q=an:1211.32005}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 6
\pages 957--978
\crossref{https://doi.org/10.1090/S1061-0022-2010-01126-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284238100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871410450}
Linking options:
https://www.mathnet.ru/eng/aa1165
https://www.mathnet.ru/eng/aa/v21/i6/p151
This publication is cited in the following 2 articles:
Ajay K. Sharma, Javid Iqbal, Shayesta Farooq, M. Mursaleen, “Weighted composition operators on spaces generated by fractional Cauchy kernels of the unit ball”, J Anal, 2024
Doubtsov E., “Families of fractional Fantappiè transforms”, Bull. Aust. Math. Soc., 82:1 (2010), 62–78