Abstract:
The radial behavior of analytic and harmonic functions that admit a certain majorant in the unit disk is studied. We prove that the extremal growth or decay may occur only along small sets of radii and give precise estimates for these exceptional sets.
Keywords:
spaces of analytic functions in the disk, harmonic functions, boundary values, Korenblum spaces.
Citation:
A. Borichev, Yu. Lyubarskiǐ, E. Malinnikova, P. Thomas, “Radial growth of functions in the Korenblum space”, Algebra i Analiz, 21:6 (2009), 47–65; St. Petersburg Math. J., 21:6 (2010), 877–891
\Bibitem{BorLyuMal09}
\by A.~Borichev, Yu.~Lyubarski{\v\i}, E.~Malinnikova, P.~Thomas
\paper Radial growth of functions in the Korenblum space
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 6
\pages 47--65
\mathnet{http://mi.mathnet.ru/aa1162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604542}
\zmath{https://zbmath.org/?q=an:1208.30052}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 6
\pages 877--891
\crossref{https://doi.org/10.1090/S1061-0022-2010-01123-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284238100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861014284}
Linking options:
https://www.mathnet.ru/eng/aa1162
https://www.mathnet.ru/eng/aa/v21/i6/p47
This publication is cited in the following 9 articles:
Massimo A. Picardello, Maura Salvatori, Wolfgang Woess, “Polyharmonic potential theory on the Poincaré disk”, Journal of Functional Analysis, 286:9 (2024), 110362
Hedenmalm H., Shimorin S., “Gaussian Analytic Functions and Operator Symbols of Dirichlet Type”, Adv. Math., 372 (2020), 107301
Mozolyako P., “Boundary Oscillations of Harmonic Functions in Lipschitz Domains”, Collect. Math., 68:3 (2017), 359–376