Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 2, Pages 122–130 (Mi aa116)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

Estimates for derivatives of rational functions and the fourth Zolotarev problem

A. L. Lukashovab

a Saratov State University named after N. G. Chernyshevsky
b Department of Mathematics, Fatih University, Istanbul, Turkey
Full-text PDF (141 kB) Citations (9)
References:
Abstract: An estimate is obtained for the derivatives of real rational functions that map a compact set on the real line to another set of the same kind. Many well-known inequalities (due to Bernstein, Bernstein—Szegö, V. S. Videnskii, V. N. Rusak, and M. Baran–V. Totik) are particular cases of this estimate. It is shown that the estimate is sharp. With the help of the solution of the fourth Zolotarev problem, a class of examples is constructed in which the estimates obtained turn into identities.
Keywords: Estimates of derivatives, optimal filter, Zolotarev problems.
Received: 11.10.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 2, Pages 253–259
DOI: https://doi.org/10.1090/S1061-0022-08-00997-7
Bibliographic databases:
Document Type: Article
MSC: Primary 53A04; Secondary 52A40, 52A10
Language: Russian
Citation: A. L. Lukashov, “Estimates for derivatives of rational functions and the fourth Zolotarev problem”, Algebra i Analiz, 19:2 (2007), 122–130; St. Petersburg Math. J., 19:2 (2008), 253–259
Citation in format AMSBIB
\Bibitem{Luk07}
\by A.~L.~Lukashov
\paper Estimates for derivatives of rational functions and the fourth Zolotarev problem
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 122--130
\mathnet{http://mi.mathnet.ru/aa116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333900}
\zmath{https://zbmath.org/?q=an:1181.26032}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 253--259
\crossref{https://doi.org/10.1090/S1061-0022-08-00997-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653200007}
Linking options:
  • https://www.mathnet.ru/eng/aa116
  • https://www.mathnet.ru/eng/aa/v19/i2/p122
  • This publication is cited in the following 9 articles:
    1. Lukashov A.L., Szabados J., “The order of Lebesgue constant of Lagrange interpolation on several intervals”, Period. Math. Hung., 72:2 (2016), 103–111  crossref  mathscinet  zmath  isi  elib  scopus
    2. Totik V., “Bernstein- and Markov-Type Inequalities For Trigonometric Polynomials on General Sets”, Int. Math. Res. Notices, 2015, no. 11, 2986–3020  crossref  mathscinet  zmath  isi  elib
    3. A. V. Olesov, “Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials”, Sb. Math., 205:10 (2014), 1413–1441  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Totik V., “Bernstein-type inequalities”, J. Approx. Theory, 164:10 (2012), 1390–1401  crossref  mathscinet  zmath  isi
    6. S. I. Kalmykov, “Majoration principles and some inequalities for polynomials and rational functions with prescribed poles”, J. Math. Sci. (N. Y.), 157:4 (2009), 623–631  mathnet  crossref  zmath
    7. V. N. Dubinin, D. B. Karp, V. A. Shlyk, “Izbrannye zadachi geometricheskoi teorii funktsii i teorii potentsiala”, Dalnevost. matem. zhurn., 8:1 (2008), 46–95  mathnet  elib
    8. V. N. Dubinin, “Emkosti kondensatorov i printsipy mazhoratsii v geometricheskoi teorii funktsii kompleksnogo peremennogo [Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: “Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke”]”, Sib. elektron. matem. izv., 5 (2008), 465–482  mathnet  mathscinet
    9. V. N. Dubinin, S. I. Kalmykov, “A majoration principle for meromorphic functions”, Sb. Math., 198:12 (2007), 1737–1745  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :185
    References:70
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025