Abstract:
Variational integrals whose energy densities are represented by NN-functions hh of at least quadratic growth are considered. Under rather general conditions on hh, almost everywhere regularity of vector-valued local minimizers is established, and it is possible to include the case of higher order variational problems without essential changes in the arguments.
Keywords:
vector-valued problems, local minimizers, nonstandard growth, partial regularity.
Citation:
M. Fuchs, “Regularity results for local minimizers of energies with general densities having superquadratic growth”, Algebra i Analiz, 21:5 (2009), 203–221; St. Petersburg Math. J., 21:5 (2010), 825–838
\Bibitem{Fuc09}
\by M.~Fuchs
\paper Regularity results for local minimizers of energies with general densities having superquadratic growth
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 5
\pages 203--221
\mathnet{http://mi.mathnet.ru/aa1159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604569}
\zmath{https://zbmath.org/?q=an:1207.49046}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 5
\pages 825--838
\crossref{https://doi.org/10.1090/S1061-0022-2010-01120-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282186800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863910158}
Linking options:
https://www.mathnet.ru/eng/aa1159
https://www.mathnet.ru/eng/aa/v21/i5/p203
This publication is cited in the following 4 articles:
Breit D., “Analysis of generalized Navier–Stokes equations for stationary shear thickening flows”, Nonlinear Anal., 75:14 (2012), 5549–5560
Breit D., Schirra O., “Korn-type inequalities in Orlicz-Sobolev spaces involving the trace-free part of the symmetric gradient and applications to regularity theory”, Z. Anal. Anwend., 31:3 (2012), 335–356
Breit D., “Splitting-type variational problems with $x$-dependent exponents”, Ann. Acad. Sci. Fenn. Math., 36:1 (2011), 279–289
Breit D., Stroffolini B., Verde A., “A general regularity theorem for functionals with $\varphi$-growth”, J. Math. Anal. Appl., 383:1 (2011), 226–233