Abstract:
Let Hψ=−ψ″+qψ, ψ(0)=0, ψ′(1)+bψ(1)=0 be a selfadjoint Sturm-Liouville operator acting in L2(0,1). Let λn(q,b) and νn(q,b) denote its eigenvalues and the so-called norming constants, respectively. A complete characterization of all spectral data ({λn}+∞n=0;{νn}+∞n=0) corresponding to (q;b)∈L2(0,1)×R is given, together with a similar characterization for fixed b and a parametrization of isospectral manifolds.
Citation:
E. L. Korotyaev, D. S. Chelkak, “The inverse Sturm–Liouville problem with mixed boundary conditions”, Algebra i Analiz, 21:5 (2009), 114–137; St. Petersburg Math. J., 21:5 (2010), 761–778
\Bibitem{KorChe09}
\by E.~L.~Korotyaev, D.~S.~Chelkak
\paper The inverse Sturm--Liouville problem with mixed boundary conditions
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 5
\pages 114--137
\mathnet{http://mi.mathnet.ru/aa1155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604565}
\zmath{https://zbmath.org/?q=an:1225.34025}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 5
\pages 761--778
\crossref{https://doi.org/10.1090/S1061-0022-2010-01116-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282186800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871359234}
Linking options:
https://www.mathnet.ru/eng/aa1155
https://www.mathnet.ru/eng/aa/v21/i5/p114
This publication is cited in the following 18 articles:
Namig J. Guliyev, “Spectral identities for Schrödinger operators”, Can. Math. Bull., 2025, 1
Korotyaev E.L., “Eigenvalues of Schrodinger Operators on Finite and Infinite Intervals”, Math. Nachr., 294:11 (2021), 2188–2199
Hameed E.M., Al-Jaberi A.K., “The Convergent Sequence to the Weighted Operator”, Ital. J. Pure Appl. Math., 2021, no. 46, 548–556
Guliyev N.J., “Essentially Isospectral Transformations and Their Applications”, Ann. Mat. Pura Appl., 199:4 (2020), 1621–1648
V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “Uniqueness of reconstruction of an $n$th-order differential operator with nonseparated boundary conditions by several spectra”, Dokl. Math., 101:1 (2020), 46–48
Hiroshi Isozaki, SpringerBriefs in Mathematical Physics, 38, Inverse Spectral and Scattering Theory, 2020, 1
Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Inverse Sturm-Liouville Problem With Nonseparated Boundary Conditions on a Geometric Graph”, Differ. Equ., 55:2 (2019), 194–204
Korotyaev E.L., “Inverse Sturm-Liouville Problems For Non-Borg Conditions”, J. Inverse Ill-Posed Probl., 27:3 (2019), 445–452
Harutyunyan T., “The Eigenvalues' Function of the Family of Sturm-Liouville Operators and the Inverse Problems”, Tamkang J. Math., 50:3, SI (2019), 233–252
V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “Inverse problem for a differential operator with nonseparated boundary conditions”, Dokl. Math., 97:2 (2018), 181–183
Sadovnichy V.A., Sultanaev Ya.T., Aklityamov A.M., “On the Uniqueness of the Solution of the Inverse Sturm-Liouville Problem With Nonseparated Boundary Conditions on a Geometric Graph”, Dokl. Math., 98:1 (2018), 338–340
Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Inverse Problem For a Fourth-Order Differential Operator With Nonseparated Boundary Conditions”, Differ. Equ., 54:10 (2018), 1354–1362
A. M. Akhtyamov, I. M. Utyashev, “Vosstanovlenie polinomialnogo potentsiala v zadache Shturma–Liuvillya”, Zhurnal SVMO, 20:2 (2018), 148–158
Guo H., Qi J., “Extremal Norm For Potentials of Sturm-Liouville Eigenvalue Problems With Separated Boundary Conditions”, Electron. J. Differ. Equ., 2017, 99
Isozaki H., Korotyaev E.L., “Inverse Spectral Theory and the Minkowski Problem For the Surface of Revolution”, Dyn. Partial Differ. Equ., 14:4 (2017), 321–341
Ibadzadeh Ch.G., Nabiev I.M., “An inverse problem for Sturm–Liouville operators with non-separated boundary conditions containing the spectral parameter”, J. Inverse Ill-Posed Probl., 24:4 (2016), 407–411
A. M. Savchuk, A. A. Shkalikov, “Inverse Problems for Sturm–Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability”, Funct. Anal. Appl., 44:4 (2010), 270–285