|
This article is cited in 17 scientific papers (total in 17 papers)
Research Papers
The inverse Sturm–Liouville problem with mixed boundary conditions
E. L. Korotyaeva, D. S. Chelkakb a School of Math., Cardiff University, Cardiff, Wales, UK
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Abstract:
Let $H\psi=-\psi''+q\psi$, $\psi(0)=0$, $\psi'(1)+b\psi(1)=0$ be a selfadjoint Sturm-Liouville operator acting in $L^2(0,1)$. Let $\lambda_n(q,b)$ and $\nu_n(q,b)$ denote its eigenvalues and the so-called norming constants, respectively. A complete characterization of all spectral data $(\{\lambda_n\}_{n=0}^{+\infty};\{\nu_n\}_{n=0}^{+\infty})$ corresponding to $(q;b)\in L^2(0,1)\times\mathbb{R}$ is given, together with a similar characterization for fixed $b$ and a parametrization of isospectral manifolds.
Received: 15.03.2008
Citation:
E. L. Korotyaev, D. S. Chelkak, “The inverse Sturm–Liouville problem with mixed boundary conditions”, Algebra i Analiz, 21:5 (2009), 114–137; St. Petersburg Math. J., 21:5 (2010), 761–778
Linking options:
https://www.mathnet.ru/eng/aa1155 https://www.mathnet.ru/eng/aa/v21/i5/p114
|
Statistics & downloads: |
Abstract page: | 651 | Full-text PDF : | 198 | References: | 52 | First page: | 35 |
|