Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 4, Pages 126–173 (Mi aa1147)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

Homogenization of the mixed boundary value problem for a formally self-adjoint system in a periodically perforated domain

G. Cardonea, A. Corbo Espositob, S. A. Nazarovc

a University of Sannio, Department of Engineering, Benevento, Italy
b University of Cassino, Department of Automation, Electromagnetism Information and Industrial Mathematics, Cassino, Italy
c Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (528 kB) Citations (6)
References:
Abstract: A generalized Gårding-Korn inequality is established in a domain $\Omega(h)\subset{\mathbb{R}}^n$ with a small, of size $O(h)$, periodic perforation, without any restrictions on the shape of the periodicity cell, except for the usual assumptions that the boundary is Lipschitzian, which ensures the Korn inequality in a general domain. Homogenization is performed for a formally selfadjoint elliptic system of second order differential equations with the Dirichlet or Neumann conditions on the outer or inner parts of the boundary, respectively; the data of the problem are assumed to satisfy assumptions of two types: additional smoothness is required from the dependence on either the “slow” variables $x$, or the “fast” variables $y=h^{-1}x$. It is checked that the exponent $\delta\in(0,1/2]$ in the accuracy $O(h^\delta)$ $O(h^\delta)$ of homogenization depends on the smoothness properties of the problem data.
Received: 24.11.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 4, Pages 601–634
DOI: https://doi.org/10.1090/S1061-0022-2010-01108-7
Bibliographic databases:
Document Type: Article
MSC: 35J57
Language: Russian
Citation: G. Cardone, A. Corbo Esposito, S. A. Nazarov, “Homogenization of the mixed boundary value problem for a formally self-adjoint system in a periodically perforated domain”, Algebra i Analiz, 21:4 (2009), 126–173; St. Petersburg Math. J., 21:4 (2010), 601–634
Citation in format AMSBIB
\Bibitem{CarCorNaz09}
\by G.~Cardone, A.~Corbo Esposito, S.~A.~Nazarov
\paper Homogenization of the mixed boundary value problem for a~formally self-adjoint system in a~periodically perforated domain
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 4
\pages 126--173
\mathnet{http://mi.mathnet.ru/aa1147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584210}
\zmath{https://zbmath.org/?q=an:1200.35100}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 4
\pages 601--634
\crossref{https://doi.org/10.1090/S1061-0022-2010-01108-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279048700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871363375}
Linking options:
  • https://www.mathnet.ru/eng/aa1147
  • https://www.mathnet.ru/eng/aa/v21/i4/p126
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:599
    Full-text PDF :146
    References:107
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024