Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 3, Pages 93–129 (Mi aa1141)  

This article is cited in 11 scientific papers (total in 11 papers)

Research Papers

Classifying finite localizations of quasi-coherent sheaves

G. A. Garkusha

Department of Mathematics, Swansea University, Swansea, United Kingdom
References:
Abstract: Given a quasicompact, quasiseparated scheme $X$, a bijection between the tensor localizing subcategories of finite type in $\operatorname{Qcoh}(X)$ and the set of all subsets $Y\subseteq X$ of the form $Y=\bigcup_{i\in\Omega}Y_i$, with $X\setminus Y_i$ quasicompact and open for all $i\in\Omega$, is established. As an application, an isomorphism of ringed spaces
$$ (X,\mathcal{O}_X)\overset{\cong}{\longrightarrow}(\sf{spec}(\operatorname{Qcoh}(X)),\mathcal{O}_{\operatorname{Qcoh}(X)}) $$
is constructed, where $(\sf{spec}(\operatorname{Qcoh}(X)),\mathcal{O}_{\operatorname{Qcoh}(X)})$ is a ringed space associated with the lattice of tensor localizing subcategories of finite type. Also, a bijective correspondence between the tensor thick subcategories of perfect complexes $\mathcal{D}_{\operatorname{per}}(X)$ and the tensor localizing subcategories of finite type in $\operatorname{Qcoh}(X)$ is established.
Received: 20.07.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 3, Pages 433–458
DOI: https://doi.org/10.1090/S1061-0022-10-01102-7
Bibliographic databases:
Document Type: Article
MSC: 14A15, 18F20
Language: Russian
Citation: G. A. Garkusha, “Classifying finite localizations of quasi-coherent sheaves”, Algebra i Analiz, 21:3 (2009), 93–129; St. Petersburg Math. J., 21:3 (2010), 433–458
Citation in format AMSBIB
\Bibitem{Gar09}
\by G.~A.~Garkusha
\paper Classifying finite localizations of quasi-coherent sheaves
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 3
\pages 93--129
\mathnet{http://mi.mathnet.ru/aa1141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588764}
\zmath{https://zbmath.org/?q=an:1211.14008}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 3
\pages 433--458
\crossref{https://doi.org/10.1090/S1061-0022-10-01102-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277451000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871308495}
Linking options:
  • https://www.mathnet.ru/eng/aa1141
  • https://www.mathnet.ru/eng/aa/v21/i3/p93
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025