Abstract:
The exactly solvable five-vertex model on a square lattice with fixed boundary conditions is considered. Application of the algebraic Bethe ansatz makes it possible to express the partition function and the boundary correlation functions of the nonhomogeneous model in the determinantal form. The relationship established between the homogeneous model and plane partitions helps to calculate its partition function.
Citation:
N. M. Bogolyubov, “Five vertex model with fixed boundary conditions”, Algebra i Analiz, 21:3 (2009), 58–78; St. Petersburg Math. J., 21:3 (2010), 407–421
\Bibitem{Bog09}
\by N.~M.~Bogolyubov
\paper Five vertex model with fixed boundary conditions
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 3
\pages 58--78
\mathnet{http://mi.mathnet.ru/aa1139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588762}
\zmath{https://zbmath.org/?q=an:1194.81174}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 3
\pages 407--421
\crossref{https://doi.org/10.1090/S1061-0022-10-01100-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277451000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871312350}
Linking options:
https://www.mathnet.ru/eng/aa1139
https://www.mathnet.ru/eng/aa/v21/i3/p58
This publication is cited in the following 13 articles:
Ivan N. Burenev, Andrei G. Pronko, “Thermodynamics of the Five-Vertex Model with Scalar-Product Boundary Conditions”, Commun. Math. Phys., 405:6 (2024)
N. M. Bogoliubov, C. L. Malyshev, “Scalar Product of the Five-Vertex Model and Complete Symmetric Polynomials”, J Math Sci, 2024
N. M. Bogolyubov, C. L. Malyshev, “Scalar product of the five-vertex model and complete symmetric polynomials”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 29, Zap. nauchn. sem. POMI, 520, POMI, SPb., 2023, 124–138
I. N. Burenev, A. G. Pronko, “Quantum Hamiltonians Generated by the R-Matrix of the Five-Vertex Model”, J Math Sci, 264:3 (2022), 271
Burenev I.N., Pronko A.G., “Determinant Formulas For the Five-Vertex Model”, J. Phys. A-Math. Theor., 54:5 (2021), 055008
de Gier J., Kenyon R., Watson S.S., “Limit Shapes For the Asymmetric Five Vertex Model”, Commun. Math. Phys., 385:2 (2021), 793–836
I. N. Burenev, A. G. Pronko, “Kvantovye gamiltoniany porozhdaemye RR-matritsei pyativershinnoi modeli”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 27, Zap. nauchn. sem. POMI, 494, POMI, SPb., 2020, 103–124
Bogoliubov N.M., “Four-Vertex Model in the Linearly Growing External Field Under the Fixed and Periodic Boundary Conditions”, Phys. Part. Nuclei, 51:4 (2020), 429–433
Bogoliubov N., Malyshev C., “The Partition Function of the Four-Vertex Model in Inhomogeneous External Field and Trace Statistics”, J. Phys. A-Math. Theor., 52:49 (2019), 495002
Yu.V. Bushkova, G.E. Ivanova, L.V. Stakhovskaya, A.A. Frolov, “Brain-computer-interface technology with multisensory feedback for controlled ideomotor training in the rehabilitation of stroke patients”, BRSMU, 2019, no. 2019;6, 27
J. Math. Sci. (N. Y.), 242:5 (2019), 742–752
A. G. Pronko, “The five-vertex model and enumerations of plane partitions”, J. Math. Sci. (N. Y.), 213:5 (2016), 756–768
Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.