Abstract:
Let R be a commutative ring with 1, n a natural number, and let l=[n/2]. Suppose that 2∈R∗ and l⩾3. We describe the subgroups of the general linear group GL(n,R) that contain the elementary orthogonal group EO(n,R). The main result of the paper says that, for every intermediate subgroup H, there exists a largest ideal A⊴ such that \operatorname{EEO}(n,R,A)=\operatorname{EO}(n,R)E(n,R,A)\trianglelefteq H. Another important result is an explicit calculation of the normalizer of the group \operatorname{EEO}(n,R,A). If R=K is a field, similar results were obtained earlier by Dye, King, Shang Zhi Li, and Bashkirov. For overgroups of the even split elementary orthogonal group \operatorname{EO}(2l,R) and the elementary symplectic group \operatorname{Ep}(2l,R), analogous results appeared in previous papers by the authors (Zapiski Nauchn. Semin. POMI, 2000, v. 272; Algebra i Analiz, 2003, v. 15, no. 3).
Keywords:
General linear group, overgroup, split elementary orthogonal group.
Citation:
N. A. Vavilov, V. A. Petrov, “Overgroups of \mathrm{EO}(n,R)”, Algebra i Analiz, 19:2 (2007), 10–51; St. Petersburg Math. J., 19:2 (2008), 167–195
\Bibitem{VavPet07}
\by N.~A.~Vavilov, V.~A.~Petrov
\paper Overgroups of $\mathrm{EO}(n,R)$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 10--51
\mathnet{http://mi.mathnet.ru/aa111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333895}
\zmath{https://zbmath.org/?q=an:1159.20024}
\elib{https://elibrary.ru/item.asp?id=9487746}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 167--195
\crossref{https://doi.org/10.1090/S1061-0022-08-00992-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653200002}
Linking options:
https://www.mathnet.ru/eng/aa111
https://www.mathnet.ru/eng/aa/v19/i2/p10
This publication is cited in the following 28 articles:
R. Lubkov, “Reverse Decomposition of Unipotents in Polyvector Representations”, J Math Sci, 2025
Roman Lubkov, Ilia Nekrasov, “Overgroups of exterior powers of an elementary group. levels”, Linear and Multilinear Algebra, 72:4 (2024), 563
E. B. Plotkin, A. I. Generalov, N. S. Geldkhauzer, N. L. Gordeev, A. Yu. Luzgarev, V. V. Nesterov, I. A. Panin, V. A. Petrov, S. Yu. Pilyugin, A. V. Stepanov, A. K. Stavrova, V. G. Khalin, “O Nikolae Aleksandroviche Vavilove”, Voprosy teorii predstavlenii algebr i grupp. 40, Posvyaschaetsya pamyati Nikolaya Aleksandrovicha VAVILOVA, Zap. nauchn. sem. POMI, 531, POMI, SPb., 2024, 7–40
R. A. Lubkov, “Nadgruppy elementarnykh grupp v polivektornykh predstavleniyakh”, Voprosy teorii predstavlenii algebr i grupp. 40, Posvyaschaetsya pamyati Nikolaya Aleksandrovicha VAVILOVA, Zap. nauchn. sem. POMI, 531, POMI, SPb., 2024, 101–116
R. A. Lubkov, “Obratnoe razlozhenie unipotentov v polivektornykh predstavleniyakh”, Voprosy teorii predstavlenii algebr i grupp. 38, Zap. nauchn. sem. POMI, 513, POMI, SPb., 2022, 120–138
N. A. Vavilov, Z. Zhang, “Relative Centralizers of Relative Subgroups”, J Math Sci, 264:1 (2022), 4
Lubkov R., “The Reverse Decomposition of Unipotents For Bivectors”, Commun. Algebr., 49:10 (2021), 4546–4556
R. Lubkov, A. Stepanov, “Subgroups of Chevalley Groups Over Rings”, J Math Sci, 252:6 (2021), 829
N. A. Vavilov, Z. Zhang, “Relative centralisers of relative subgroups”, Voprosy teorii predstavlenii algebr i grupp. 35, Zap. nauchn. sem. POMI, 492, POMI, SPb., 2020, 10–24
Das M.K., Tikader S., Zinna M.A., ““P-1-Gluing” For Local Complete Intersections”, Math. Z., 294:1-2 (2020), 667–685
E. Yu. Voronetsky, “Groups normalized by the odd unitary group”, St. Petersburg Math. J., 31:6 (2020), 939–967
R. Lubkov, A. Stepanov, “Subgroups of Chevalley groups over rings”, Voprosy teorii predstavlenii algebr i grupp. 35, Zap. nauchn. sem. POMI, 484, POMI, SPb., 2019, 121–137
R. A. Lubkov, I. I. Nekrasov, “Explicit equations for exterior square of the general linear group”, J. Math. Sci. (N. Y.), 243:4 (2019), 583–594
Fasel J., “On the number of generators of ideals in polynomial rings”, Ann. Math., 184:1 (2016), 315–331
N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of the Chevalley group of type \mathrm E_7”, St. Petersburg Math. J., 27:6 (2016), 899–921
Hazrat R. Vavilov N. Zhang Z., “Relative Commutator Calculus in Chevalley Groups”, J. Algebra, 385 (2013), 262–293
Stepanov A., “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29
N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195
A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of E(m,R)\otimes E(n,R). I”, St. Petersburg Math. J., 23:5 (2012), 819–849