Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1999, Volume 11, Issue 5, Pages 250–272 (Mi aa1083)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Self-intersection surfaces, regular homotopy, and finite order invariants

T. Ekholm

Department of Mathematics, Uppsala University, Uppsala, Sweden
Abstract: Explicit formulas for the regular homotopy classes of generic immersions $S^k\to{\mathbb R}^{2k-2}$ are given in terms of the corresponding self-intersection manifolds with natural additional structures.
There is a natural notion of finite order invariants of generic immersions. We determine the group of $m$th order invariants for each $m$ and prove that the finite order invariants are not sufficient for distinguishing generic immersions that cannot be obtained from each other by a regular homotopy through generic immersions.
Keywords: immersion, regular homotopy, finite order invariants, spin and pin structures.
Received: 12.04.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: T. Ekholm, “Self-intersection surfaces, regular homotopy, and finite order invariants”, Algebra i Analiz, 11:5 (1999), 250–272; St. Petersburg Math. J., 11:5 (2000), 909–929
Citation in format AMSBIB
\Bibitem{Ekh99}
\by T.~Ekholm
\paper Self-intersection surfaces, regular homotopy, and finite order invariants
\jour Algebra i Analiz
\yr 1999
\vol 11
\issue 5
\pages 250--272
\mathnet{http://mi.mathnet.ru/aa1083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734356}
\zmath{https://zbmath.org/?q=an:0967.57022}
\transl
\jour St. Petersburg Math. J.
\yr 2000
\vol 11
\issue 5
\pages 909--929
Linking options:
  • https://www.mathnet.ru/eng/aa1083
  • https://www.mathnet.ru/eng/aa/v11/i5/p250
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :143
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024