Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1998, Volume 10, Issue 6, Pages 144–155 (Mi aa1036)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Some remarks on Leopoldt's conjecture

F. Lorenz
Full-text PDF (536 kB) Citations (2)
Abstract: Let $k$ be a number field, and let $p$ be a fixed prime number. Then the vanishing of the Leopoldt kernel $\mathscr{L}_p(k)$ is shown to be equivalent to the validity of a "Strong Local-Global Principle on units of $k$". This adds a problem of effectivity to Leopoldt's conjecture (an example to which is provided by the classical Kummer lemma on the $p$th powers of units in the field of the $p$th roots of unity). Some further remarks pertain to $\mathscr{L}_p(k)$ as a Galois module. For example, if $k/{\mathbb Q}$ is an Abelian $p$-extension, then the triviality of $\mathscr{L}_p(k)$ can be shown quite easily (in particular, without using Brumer's transcendency theorem).
Received: 26.04.1998
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Lorenz, “Some remarks on Leopoldt's conjecture”, Algebra i Analiz, 10:6 (1998), 144–155; St. Petersburg Math. J., 10:6 (1999), 1005–1013
Citation in format AMSBIB
\Bibitem{Lor98}
\by F.~Lorenz
\paper Some remarks on Leopoldt's conjecture
\jour Algebra i Analiz
\yr 1998
\vol 10
\issue 6
\pages 144--155
\mathnet{http://mi.mathnet.ru/aa1036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1678991}
\zmath{https://zbmath.org/?q=an:0936.11063}
\transl
\jour St. Petersburg Math. J.
\yr 1999
\vol 10
\issue 6
\pages 1005--1013
Linking options:
  • https://www.mathnet.ru/eng/aa1036
  • https://www.mathnet.ru/eng/aa/v10/i6/p144
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :158
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024