Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1998, Volume 10, Issue 5, Pages 85–142 (Mi aa1029)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Integral equations of logarithmic potential theory on contours with a cusp in Hölder spaces

V. G. Maz'yaa, A. A. Solovievb

a Linköping University, Department of Mathematics, Linköping, Sweden
b Chelyabinsk State University, Faculty of Mathematics
Received: 01.12.1997
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Maz'ya, A. A. Soloviev, “Integral equations of logarithmic potential theory on contours with a cusp in Hölder spaces”, Algebra i Analiz, 10:5 (1998), 85–142; St. Petersburg Math. J., 10:5 (1999), 791–832
Citation in format AMSBIB
\Bibitem{MazSol98}
\by V.~G.~Maz'ya, A.~A.~Soloviev
\paper Integral equations of logarithmic potential theory on contours with a cusp in H\"older spaces
\jour Algebra i Analiz
\yr 1998
\vol 10
\issue 5
\pages 85--142
\mathnet{http://mi.mathnet.ru/aa1029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1659992}
\zmath{https://zbmath.org/?q=an:0931.31001}
\transl
\jour St. Petersburg Math. J.
\yr 1999
\vol 10
\issue 5
\pages 791--832
Linking options:
  • https://www.mathnet.ru/eng/aa1029
  • https://www.mathnet.ru/eng/aa/v10/i5/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024