Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 2, Pages 136–165 (Mi aa1008)  

This article is cited in 4 scientific papers (total in 4 papers)

Operators in the spaces of pseudocharacters of braid groups

A. V. Malyutin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (403 kB) Citations (4)
References:
Abstract: Pseudocharacters of groups have recently found application in the theory of classical knots and links in $\mathbb R^3$. More precisely, there is a relationship between pseudocharacters of Artin's braid groups and properties of links represented by braids. In the paper, this relationship is investigated and the notion of kernel pseudocharacters of braid groups is introduced. It is proved that if a kernel pseudocharacter $\phi$ and a braid $\beta$ satisfy $|\phi(\beta)|>C_{\phi}$, where $C_{\phi}$ is the defect of $\phi$, then $\beta$ represents a prime link (i.e., a link that is noncomposite, nonsplit, and nontrivial). Furthermore, the space of braid group pseudocharacters is studied and a way is described to obtain nontrivial kernel pseudocharacters from an arbitrary braid group pseudocharacter that is not a homomorphism. This makes it possible to employ an arbitrary nontrivial braid group pseudocharacter for recognition of prime knots and links.
Keywords: knot, link, braid, pseudocharacter, quasimorphism.
Received: 16.09.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 2, Pages 261–280
DOI: https://doi.org/10.1090/S1061-0022-10-01094-0
Bibliographic databases:
MSC: 20F36
Language: Russian
Citation: A. V. Malyutin, “Operators in the spaces of pseudocharacters of braid groups”, Algebra i Analiz, 21:2 (2009), 136–165; St. Petersburg Math. J., 21:2 (2010), 261–280
Citation in format AMSBIB
\Bibitem{Mal09}
\by A.~V.~Malyutin
\paper Operators in the spaces of pseudocharacters of braid groups
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 2
\pages 136--165
\mathnet{http://mi.mathnet.ru/aa1008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553045}
\zmath{https://zbmath.org/?q=an:1220.20031}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 2
\pages 261--280
\crossref{https://doi.org/10.1090/S1061-0022-10-01094-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275558100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871287115}
Linking options:
  • https://www.mathnet.ru/eng/aa1008
  • https://www.mathnet.ru/eng/aa/v21/i2/p136
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :126
    References:61
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024