Abstract:
It is demonstrated that the decompositions of integrable highest weight modules of a simple Lie algebra (classical or affine) with respect to its reductive subalgebra obey a set of algebraic relations leading to recursive properties for the corresponding branching coefficients. These properties are encoded in a special element Γg⊃a of the formal algebra Ea that describes the injections a→g and is called a fan. In the simplest case where a=h(g), the recursion procedure generates the weight diagram of a module Lg. When the recursion described by a fan is applied to highest weight modules, it provides a highly efficient tool for explicit calculations of branching coefficients.
Citation:
M. Ilyin, P. Kulish, V. Lyakhovsky, “On the properties of branching coefficients for affine Lie groups”, Algebra i Analiz, 21:2 (2009), 52–70; St. Petersburg Math. J., 21:2 (2010), 203–216
\Bibitem{IliKulLya09}
\by M.~Ilyin, P.~Kulish, V.~Lyakhovsky
\paper On the properties of branching coefficients for affine Lie groups
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 2
\pages 52--70
\mathnet{http://mi.mathnet.ru/aa1004}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549451}
\zmath{https://zbmath.org/?q=an:1244.17014}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 2
\pages 203--216
\crossref{https://doi.org/10.1090/S1061-0022-10-01090-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275558100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055177096}
Linking options:
https://www.mathnet.ru/eng/aa1004
https://www.mathnet.ru/eng/aa/v21/i2/p52
This publication is cited in the following 11 articles:
Kitanine N., Nepomechie R.I., Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theoret. and Math. Phys., 171:2 (2012), 666–674