Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 2, Pages 52–70 (Mi aa1004)  

This article is cited in 10 scientific papers (total in 11 papers)

On the properties of branching coefficients for affine Lie groups

M. Ilyina, P. Kulishb, V. Lyakhovsky

a S.-Petersburg State University, Theoretical Department, S.-Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: It is demonstrated that the decompositions of integrable highest weight modules of a simple Lie algebra (classical or affine) with respect to its reductive subalgebra obey a set of algebraic relations leading to recursive properties for the corresponding branching coefficients. These properties are encoded in a special element Γga of the formal algebra Ea that describes the injections ag and is called a fan. In the simplest case where a=h(g), the recursion procedure generates the weight diagram of a module Lg. When the recursion described by a fan is applied to highest weight modules, it provides a highly efficient tool for explicit calculations of branching coefficients.
Keywords: integrable highest weight modules, simple Lie algebra, reductive subalgebra, branching coefficients, fan, weight diagram.
Received: 14.09.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 2, Pages 203–216
DOI: https://doi.org/10.1090/S1061-0022-10-01090-3
Bibliographic databases:
MSC: 17B10, 17B20
Language: Russian
Citation: M. Ilyin, P. Kulish, V. Lyakhovsky, “On the properties of branching coefficients for affine Lie groups”, Algebra i Analiz, 21:2 (2009), 52–70; St. Petersburg Math. J., 21:2 (2010), 203–216
Citation in format AMSBIB
\Bibitem{IliKulLya09}
\by M.~Ilyin, P.~Kulish, V.~Lyakhovsky
\paper On the properties of branching coefficients for affine Lie groups
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 2
\pages 52--70
\mathnet{http://mi.mathnet.ru/aa1004}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549451}
\zmath{https://zbmath.org/?q=an:1244.17014}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 2
\pages 203--216
\crossref{https://doi.org/10.1090/S1061-0022-10-01090-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275558100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055177096}
Linking options:
  • https://www.mathnet.ru/eng/aa1004
  • https://www.mathnet.ru/eng/aa/v21/i2/p52
  • This publication is cited in the following 11 articles:
    1. Kitanine N., Nepomechie R.I., Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201  crossref  mathscinet  zmath  isi  scopus
    2. “Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19  mathnet  mathscinet
    3. P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theoret. and Math. Phys., 171:2 (2012), 666–674  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. J. Math. Sci. (N. Y.), 192:1 (2013), 91–100  mathnet  crossref  mathscinet
    5. Lyakhovsky V.D., Nazarov A.A., “On affine extension of splint root systems”, Phys. Part. Nuclei, 43:5 (2012), 676–678  crossref  adsnasa  isi  elib  scopus
    6. Kulish P.P., Lyakhovsky V.D., Postnova O.V., “Tensor powers for non-simply laced Lie algebras $B_2$-case”, Algebra, Geometry, and Mathematical Physics 2010, J. Phys. Conf. Ser., 346, eds. Abramov V., Fuchs J., Paal E., Shestopalov Y., Silvestrov S., Stolin A., IOP Publishing Ltd., 2012, 012012  crossref  isi  elib  scopus
    7. Kulish P.P., Lyakhovsky V.D., Postnova O.V., “Multiplicity functions for tensor powers. $A_n$-case”, 7th International Conference on Quantum Theory and Symmetries (Qts7), J. Phys. Conf. Ser., 343, IOP Publishing Ltd., 2012, 012070  crossref  isi  scopus
    8. Lyakhovsky V.D., Nazarov A.A., “Recursive algorithm and branching for nonmaximal embeddings”, J. Phys. A, 44:7 (2011), 075205, 20 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. V. D. Lyakhovsky, A. A. Nazarov, “Recursive properties of branching and BGG resolution”, Theoret. and Math. Phys., 169:2 (2011), 1551–1560  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. J. Math. Sci. (N. Y.), 168:6 (2010), 871–880  mathnet  crossref
    11. Petr Kulish, Vladimir Lyakhovsky, “String Functions for Affine Lie Algebras Integrable Modules”, SIGMA, 4 (2008), 085, 18 pp.  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:683
    Full-text PDF :157
    References:98
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025