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Problem formulation

: « def . : _
P): = ggg{f(:v)- Az = b},

m () C X is a simple closed convex set,

m function f(-) is strongly convex on Q:

fy) = f(2) +(Vf(2),y —2) + 30Ny —2l®, zy€Q.

m A: X — Y™ is a linear operator, and b € Y*.

Approximate solution: find Z € @) such that

(@) = <ep, [[AZ =0l < €.
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Complexity of problem (P): Black Box model

Assume for a moment that all norms are Euclidean.
mIfA=0, ||Vf(z)|« <L, and z € Q, then we need
0 (L72 iterations.

eg o(f)

m If f = const, then we need O (é |A]| diam Q) iterations.
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Complexity of problem (P): Black Box model

Assume for a moment that all norms are Euclidean.
mIfA=0, ||Vf(z)|« <L, and z € Q, then we need
0 (Efi% iterations.
m If f = const, then we need O (é |A]| diam Q) iterations.

(Minimize the squared residual by FGM).

m Define nonsmooth functional constraint
g(w) = || Az —b]| < 0.
Standard subgradient method ensures
2
0O ([ef; + M} diam2Q> iterations.

€g
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Dual approach

Define the Lagrangian L(z,y) = f(z) + (b — Az, y).
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Dual approach

Define the Lagrangian L(z,y) = f(z) 4+ (b — Az,y). The dual
problem is as follows:

def . 5 def
¢(y) = minL(z,y), ¢" = sup¢(y).
z€Q yey
NB: This is useful only if ¢(y) can be easily computed.

Since f is strongly convex, ¢(y) is well defined for any y € Y:
where the point z(y) € @ is uniquely defined. Its gradient is
Lipschitz continuous with L(¢) = ﬁ”AHQ

But: the standard complexity bounds of GMs depend on y*:

* |12
Choosing y = 0, we have 6(y") — o(y) < UL,
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Dual approach

Define the Lagrangian L(z,y) = f(z) 4+ (b — Az,y). The dual
problem is as follows:

def . 5 def
¢(y) = minL(z,y), ¢" = sup¢(y).
z€Q yey
NB: This is useful only if ¢(y) can be easily computed.

Since f is strongly convex, ¢(y) is well defined for any y € Y:

where the point z(y) € @ is uniquely defined. Its gradient is

Lipschitz continuous with L(¢) = ﬁ”AHQ

But: the standard complexity bounds of GMs depend on y*:
* |12
Choosing yo = 0, we have ¢(y*) — ¢ (yx) < L@y

= (k+1)?
NB: ||y*|| can be big!
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Example

Let E = R?, and ||z|| = ||z||2. Consider the problem
min{f(x) = %Hx — (32||2 - M) = 1, ||| < 1}.
x
Defining the Lagrangian
L(z,y) = gllz —ealP+y(1 —2WV) = Jlz—e2—yer|* +y - 34°,
we get (y) = 2(y)/[|Z(y) |, where (y) = e2 + yer.

_ 14 2 1,2 _ 1
Thus, ¢(y) = 3(l2W)I - D" +y — 39" = 1 - ——r—.
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Example

Let E = R?, and ||z|| = ||z||2. Consider the problem
min {f(z) = 3llz —eaf* - 2V =1, ||z <1}.

Defining the Lagrangian
L(z,y) = sl —eal* +y(L —2W) = §llo—e2—yer|* +y— 337,

we get z(y) = Z(y)/||z(y)||, where &(y) = e2 + ye;.

_ 14 2 1,2 _ 1
Thus, ¢(y) = 3(l2W)I - D" +y — 39" = 1 - ——r—.

m No duality gap and ¢(y) — f* =1 as y — oo.
mz(y) = 2" =e; as y — oo.

m Optimal solution does not exist. Rate of convergence of
the standard dual GMs = 7
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Bounding the dual solution

Assumption 1: 9% and a radius p > 0 such that
Az =b and B(z,p) C Q.
Lemma. ||ATy*|| < (1+ %D)HVf(CL‘*)H* , where D = diam Q.

Proof: since (Vf(z*) — ATy* 2 —2*) >0, forallz € Q we
have

0 < (Vf(e") - ATy 2 —a") +(Vf(a*) - ATy*,2 — 1)
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Bounding the dual solution

Assumption 1: 9% and a radius p > 0 such that

Az =b and B(z,p) C Q.

Lemma. ||ATy*|| < (1+ %D)HVf(CL‘*)H* , where D = diam Q.

Proof: since (Vf(z*) — ATy* 2 —2*) >0, forallz € Q we
have

0 (Vf(a*) = ATy*, 3 —a*) + (Vf(2*) - ATy* 2 — 7)

(Vf(a*) - ATy*, 2 — 7).

Il IA
<
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Bounding the dual solution

Assumption 1: 9% and a radius p > 0 such that

Az =b and B(z,p) C Q.

Lemma. ||ATy*|| < (1+ %D)HVf(CE*)H* , where D = diam Q.

Proof: since (Vf(z*) — ATy* 2 —2*) >0, forallz € Q we
have

0 < (Vf@@*) - ATy" 7 —a*) +(Vf(a*) - ATy* 2 - 7)
= <Vf(.%'*),.f‘ - $*> + <Vf(l’*) - ATy*ax - i>

Restricting ourselves to = € B(Z, p), we obtain
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Bounding the dual solution

Assumption 1: 9% and a radius p > 0 such that

Az =b and B(z,p) C Q.

Lemma. ||ATy*|| < (1+ %D)HVf(CE*)H* , where D = diam Q.

Proof: since (Vf(z*) — ATy* 2 —2*) >0, forallz € Q we
have

0 < (Vf@@*) - ATy" 7 —a*) +(Vf(a*) - ATy* 2 - 7)
= <Vf(.%'*),.f‘ - $*> + <Vf(l’*) - ATy*ax - i>

Restricting ourselves to x € B(Z, p), we obtain
pIIVf(a*) = ATy |l < (Vf(a*),z —2*) < |[Vf(a")].- D.
Hence, ||V f(z*)[|x - D > pl| ATy*[|x — pl|V f ()] O
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Az =b and B(z,p) C Q.
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Restricting ourselves to = € B(Z, p), we obtain
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Bounding the dual solution

Assumption 1: 9% and a radius p > 0 such that

Az =b and B(z,p) C Q.

Lemma. ||ATy*|| < (1+ %D)HVf(CE*)H* , where D = diam Q.

Proof: since (Vf(z*) — ATy* 2 —2*) >0, forallz € Q we
have

0 < (Vf@@*) - ATy" 7 —a*) +(Vf(a*) - ATy* 2 - 7)
= <Vf(.%'*),.f‘ - $*> + <Vf(l’*) - ATy*ax - i>

Restricting ourselves to = € B(Z, p), we obtain
pIVI(*) = ATyl < (Vf(2*),7—a*) < [Vf(z")]« D.

Hence, |[Vf(z*)]l. - D > pll ATy*ll, — pl|¥ £(z)].. =
NB: We need ||V f(x)|l« < const. (This may not happen.)
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Since f is strongly convex, this value is finite.
On the other hand, ¢(0) = mig f(x) o f(z«), and
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Thus, function ¢ has a bounded central variation on Y:
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Problems with bounded variation

Assume that problem (P) is solvable. Define its outer variation

Out(P) = ;rg(g{f(w) Az =b} — Igggf(a:)

Since f is strongly convex, this value is finite.
On the other hand, ¢(0) = mig f(x) o f(z«), and
e

oy) < L'y = f* yey, (1)
Thus, function ¢ has a bounded central variation on Y:
" —¢(0) = Out(P) < +oo. (2)

We study numerical schemes for maximizing dual functions
satisfying assumption (2).
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Proof. Indeed, the point z(y) belongs to @ by definition,

Yu. Nesterov Functions with bounded variation 9/19



Termination criterion

For given €f,¢e, > 0, we are going to generate y € Y

a) [Ve@)lls < e,
b) (Vo). 7) = —e;.
Lemma. Let point g € Y satisfy conditions (3). Then
w(y) € Q, [Az(y) -0l < e, f(2(m) < J* + e

Proof. Indeed, the point z(y) belongs to @ by definition, and
Vo) = b— Az(p).
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Termination criterion

For given €f,¢e, > 0, we are going to generate y € Y
a) [Vo(@)ll« < e,
b) (Vo(y),y) = —e;
Lemma. Let point g € Y satisfy conditions (3). Then
x(y) €@, [Az(y) =0l < ey, [(2(7) < [*+ €5

Proof. Indeed, the point z(y) belongs to @ by definition, and
Vo(y) =b— Ax(y). Moreover,

f(x(y)) + (b — Ax(5), 9)
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Lemma. Let point g € Y satisfy conditions (3). Then

z(y) €@, [Az(y) —bll < e, f(2(7) < f"+ e

Proof. Indeed, the point z(y) belongs to @ by definition, and
Vo(y) =b— Ax(y). Moreover,
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Termination criterion

For given €f,¢e, > 0, we are going to generate y € Y

a) [Vo@)lls < e,

b) (Vo(y),y) = —e;

Lemma. Let point g € Y satisfy conditions (3). Then

z(y) €@, [Az(y) —bll < e, f(2(7) < f"+ e

Proof. Indeed, the point z(y) belongs to @ by definition, and
Vo(y) =b— Ax(y). Moreover,

f(z(@)) + (b — Az(y),9) < f(g) + (b — Az*, ) = f*.
Hence, f(2(§)) < f* — (Vo(@),5) < f*+er. O
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Range of accuracy for the norm of the gradient

Conditions (3) with any e; > 0 and €, > | Az, — b|| are satisfied
by y = 0.
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Range of accuracy for the norm of the gradient

Conditions (3) with any e; > 0 and €, > | Az, — b|| are satisfied
by y = 0.

Therefore, we always assume that

g < Az —b|* = A2, — )| < [JA]? o — 27|

< SR () = fx.)) = 2L() Out(P).
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Since ¢ has Lipschitz continuous gradients, we can maximize it
by a version of GM.
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Modified Gradient Method

Since ¢ has Lipschitz continuous gradients, we can maximize it
by a version of GM.

Choose starting point yg = 0. Note that the norms below are
arbitrary.

Modified Gradient Method
1. Choose y;, = arg max [(Vo(ur),y — yr) — 3L(D)ly — yrll?]-

2. Define yx41 = gy}, where t; € (0,1] is such that

d(Yrr1) = 6(Yy)s  (VO(Yrt1) Yrr1) = —¢y.
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Modified Gradient Method

Since ¢ has Lipschitz continuous gradients, we can maximize it
by a version of GM.

Choose starting point yg = 0. Note that the norms below are
arbitrary.

Modified Gradient Method

1. Choose y, = arg max [(Vo(yr),y — ur) — 3L(D)ly — uiell?]-
2. Define yx41 = gy}, where t; € (0,1] is such that

d(Yrr1) = 6(Yy)s  (VO(Yrt1) Yrr1) = —¢y.

Conditions of Item 2 can be satisfied by solving
1D-maximization problem m[ax] o(tyL.)-
te[0,1

Yu. Nesterov Functions with bounded variation 11/19



Convergence of GM

Yu. Nesterov Functions with bounded variation 12/19



Convergence of GM

Theorem.

Yu. Nesterov Functions with bounded variation 12/19



Convergence of GM
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Theorem. GM is well defined. For any k > 0 we have
Syr+1) — Slur) = 5 lIVeyR)I3- (4)
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syr+1) — Slur) = 5 lIVeyR)I3- (4)
Consequently, ¢(yr) > ¢(0) for all k£ > 0,
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
> (IVoly)li2
k=0
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éo Vo2 < 2L(6) Out(P). (5)
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Syer1) = dlyk) > sy Volu) 13- (4)
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éo Vo2 < 2L(6) Out(P). (5)

Proof.
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Syer1) = dlyk) > sy Volu) 13- (4)
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éo Vo2 < 2L(6) Out(P). (5)

Proof. Since ¢ has Lipschitz-continuous gradient,
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

o(y) > d(ye) + (Vo). y — vk) — sL(O)ly —wll?>, yeY.
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have
Syr+1) — Slur) = 5 lIVeyR)I3- (4)

Consequently, ¢(yr) > ¢(0) for all £ > 0, and
N
kzo IVo(yr)lli < 2L(¢) Out(P). (5)

Proof. Since ¢ has Lipschitz-continuous gradient, we have

Sy) = olyr) +{Volyr),y —yr) — 3 L(@)lly —wl®, yeY.
Substituting in this inequality y =y},
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

éiuvwmwﬁ < 2L($) Out(P). (5)

Proof. Since ¢ has Lipschitz-continuous gradient, we have

o(y) > dyr) + (Vo(ur)y — uk) — sL(D)ly —wil®, yeY.
Substituting in this inequality y =y, we get
S Vo) 2 < 6()) — dlun)
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Proof. Since ¢ has Lipschitz-continuous gradient, we have
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s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-

Yu. Nesterov Functions with bounded variation 12/19



Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

o(y) > dyr) + (Vo(ur)y — uk) — sL(D)ly —wil®, yeY.
Substituting in this inequality y =y, we get

2 VoI < 6(u) — dm) < dluker) — Ou).
Consider 0(t) = ¢(ty,.).
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

o(y) > dyr) + (Vo(ur)y — uk) — sL(D)ly —wil®, yeY.
Substituting in this inequality y =y, we get

st Vo2 < d(yp) — o(ue) < Slyrr1) — dlyr)-
Consider 0(t) = ¢(ty;,). Note that §'(t) = (Vo(ty;.), yp.)-
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

$(y) = olur) + (Volur),y — uk) — 5Ly — well®s yeY.
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1.
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

$(y) = olur) + (Volur),y — uk) — 5Ly — well®s yeY.
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
0'(1) > —ey, then t, = 1. Assume 0'(1) < —ey.
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

Sy) = olyr) +{Volyr),y —yr) — 3 L(@)lly —wl®, yeY.
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0)
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

Sy) = olyr) +{Volyr),y —yr) — 3 L(@)lly —wl®, yeY.
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0) = 0(1) — 6(0)
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have
Syr+1) — d(ur) = ol Volu)llz. (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz—continuous gradient, we have

$y) = dlye) + (Volyr),y — yk) — s L(O)lly —mell?, yeY
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0) = 0(1) = 0(0) = ¢(yi) — 6(0)
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz—continuous gradient, we have

$y) = dlye) + (Volyr),y — yk) — s L(O)lly —mell?, yeY
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0) = 0(1) = 0(0) = ¢(y,) — ¢(0) = é(yr) — ¢(0)
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz—continuous gradient, we have

$y) = dlye) + (Volyr),y — yk) — s L(O)lly —mell?, yeY
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0) = 0(1) = 0(0) = ¢(yi.) — ¢(0) = d(yr) — ¢(0) = 0.
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Convergence of GM

Theorem. GM is well defined. For any k > 0 we have

Syer1) = dlyk) > sy Volu) 13- (4)
Consequently, ¢(yr) > ¢(0) for all £ > 0, and

N
kZO IVo(up)llF < 2L(¢) Out(P). (5)
Proof. Since ¢ has Lipschitz-continuous gradient, we have

Sy) = olyr) +{Volyr),y —yr) — 3 L(@)lly —wl®, yeY.
Substituting in this inequality y =y, we get
s IVeWRlZ < o(y) — ¢yr) < dyrr1) — dy)-
Consider 0(t) = ¢(ty;,). Note that ¢'(t) = (Vo(ty), yi). If
¢'(1) > —ey, then t, = 1. Assume 0'(1) < —ey. Note that
0'(0) = 0(1) — 0(0) = ¢(yi.) — (0) = d(yr) — ¢(0) = 0.

Thus, conditions of Item 2 can be satisfied by bisection. 0
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
' 1/2
| k=0

Corollary:  [|Ve(ye,)lls < |32 L(9) Out(P)
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3),
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Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

€g

6% L(¢) Out(P) iterations. (6)
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6% L(¢) Out(P) iterations. (6)

Complexity of 1D-max. of ¢(ty,) depends on the size of y,.
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

. %L(qﬁ) Out(P) iterations. (6)
Complexity of 1D-max. of ¢(ty,) depends on the size of y,.

/ k+1 1/2
Lemma. [|yes1] < Jyj]l < |£550ut(P)]
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
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1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most
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. %L(qﬁ) Out(P) iterations. (6)
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Proof.
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1/2
Lemma. |yi1l < llyill < [%Out(?)}
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Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
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Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
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%L(qﬁ) Out(P) iterations. (6)
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Hence, for satisfying conditions (3), we need at most

N,
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%L(qﬁ) Out(P) iterations. (6)
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

. %L(qﬁ) Out(P) iterations. (6)
Complexity of 1D-max. of ¢(ty,) depends on the size of y,.
1/2
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Proof. Since t; <1,
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

. %L(qﬁ) Out(P) iterations. (6)
Complexity of 1D-max. of ¢(ty,) depends on the size of y,.
1/2
Lemma. [[yps1 | < llyf| < [2550ut(P)]
Proof. Since t; <1,
e+l < Ml < el + 2z IV yr) -

k
Hence, |lyr+1]| < ﬁw) STIIVe(yk)|l«. It remains to use (5). [
i=0
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

. %L(qﬁ) Out(P) iterations. (6)
Complexity of 1D-max. of ¢(ty,) depends on the size of y,.

kil 1/2
Lemma. [[yps1 | < llyf| < [2550ut(P)]
Proof. Since t; <1,
e+l < llygll < Ikall+ﬁIIV¢(yk)ll*-

Hence, |[yp11ll < 5705 Z IVé(yk)|l«. It remains to use (5). [
Substituting in this bound the iteration bound (6),
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Complexity of GM

Denote kg = arg min{||Vo(y;)||« : 0 < i < k}.
(2

1/2
Corollary:  [|Vo(yx, ). < [,%H L(¢) Out(P)] k> 0.
Hence, for satisfying conditions (3), we need at most

N,

€g

%L(qﬁ) Out(P) iterations. (6)
Complexity of 1D-max. of ¢(ty,) depends on the size of y,.

kil 1/2
Lemma. [[yps1 | < llyf| < [2550ut(P)]
Proof. Since t; <1,
e+l < llygll < Ikall+ﬁIIV¢(yk)ll*-

Hence, |[yp11ll < 5705 Z IVé(yk)|l«. It remains to use (5). [

Substituting in this bound the iteration bound (6), we obtain
lyerill < ZOut(P), 0<k <N,
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Fast Gradient Method

Let us choose B = 0.
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Fast Gradient Method

Let us choose B = 0. Define ||y|| = (By, y)'/2.
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2-
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2-

def
Problem: o¢f = .
roblem: ¢; Tyflea;( ®s(y)
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2

Problem: ¢35 4 rnax os(y).
yey

Denote by 5 its unique optimal solution.
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def
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95 = max s (y)
Denote by g5 its unique optimal solution. Note that
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2

def
Problem: ¢; = ma .
95 = max s (y)
Denote by g5 its unique optimal solution. Note that
5 = o(y5) — sllvs1* < o — 5lysII*.

(2
Therefore, 3[|yt||> < ¢5 — ¢5(0) < Out(P) — 35>
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2

def

Problem: ¢; = .

roblem: ¢j glea}ii ¢5(y)
Denote by g5 its unique optimal solution. Note that

5 = o(y5) — sllvs1* < o — 5lysII*.
(2)

Therefore, §[[y5|* < &5 — ¢5(0) < Out(P) — 53
NB: L(¢s) = L(¢) + 6, and o(¢5) = 9.
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Fast Gradient Method

Let us choose B = 0. Define |jy|| = (By,y)'/2.
For a fixed 6 > 0, denote ¢5(y) = ¢(y) — %I|y||2

def
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roblem: ¢j glea}ii Ps(y)
Denote by g5 its unique optimal solution. Note that

&5 = o(y5) — slysl* < o — 5llysl*.
(2)

Therefore, 3|31 < &5 — ¢5(0) < Out(P) — 3|
NB: L(¢s) = L(¢) + 6, and o(¢5) = 9.
Let us apply the simplest FGM with starting point yg = ug = 0:

Yk4+1 = Ug + mB_lv%(uk),

U1 = Yot + 5 (Y1 — Yk),
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Fast Gradient Method

Let us choose B = 0. Define ||y|| = (By,y)'/2.
For a fixed § > 0, denote ¢5(y) = ¢(y) — %I|y||2

Problem: ¢35 def Iyneaéc os(y).
Denote by g5 its unique optimal solution. Note that
&5 = o(y5) — slysl* < o — 5llysl*.
Therefore, 31 < 65 — 5(0) < Out(P) - 31
NB: L(¢s) = L(¢) + 6, and o(¢5) = 9.
Let us apply the simplest FGM with starting point yg = ug = 0:
Yk+1 = Uk + mB_lv%(%),

U1 = Ykr1 + £(Ykt1 — Uk),

[L(8)+0]'/2~5"/>

where kK = W
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Convergence of FGM

05— dsl) < 2exp (—ky/1ds) - Ou(P).
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

£ > &5 — os(yr)
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Convergence of FGM
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

€ > 05— dsyr) 2 gryre Vs un)llz
= sz Vo) — 6Byl
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Convergence of FGM
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).
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= gy Vo) = 5Byl = — 1305 (Vo(yr), yk)-
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Thus, in order to guarantee (3);, we need £ <
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

§ = ¢5—9slyr) = WHV%(%)HE
= gy Vo) = 5Byl = — 1305 (Vo(yr), yk)-

2¢€r6
L(¢)+o-

Thus, in order to guarantee (3);, we need £ <
On the other hand, for (3), we need

IV ()|«
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

§ = ¢5—9slyr) = WHV%(%)HE
stz | Vo) — 6Bygll? > — Lo (Vo(yr): k).

2¢€r6
L(¢)+o-

Thus, in order to guarantee (3);, we need £ <
On the other hand, for (3), we need

IVl < [26(L(0) + )] + 8y
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

§ = ¢5—9slyr) = WHV%(%)HE
stz | Vo) — 6Bygll? > — Lo (Vo(yr): k).

2¢€r6
L(¢)+o-

Thus, in order to guarantee (3);, we need £ <
On the other hand, for (3), we need

Vo)l < [26(L(9) + 0)]V/2 + 6|yl
< RE(L(e) + 6)]V2 + 6 [Lout(P)]
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

§ = ¢5—9slyr) = WHV%(%)HE
stz | Vo) — 6Bygll? > — Lo (Vo(yr): k).

2¢€r6
L(¢)+o-

Thus, in order to guarantee (3);, we need £ <
On the other hand, for (3), we need

Vo)l < [26(L(9) + 0)]V/2 + 6|yl
< RE(L() + 0)]V2 + 5 [Lout(P)]? < ¢,
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Convergence of FGM

65 —os(y) < 2exp (—ky/7ches) - Out(P).

Thus, for any £ > 0 and k large enough, we can ensure

§ = ¢5—dsyk) = m”v%(yk)”g
stz | Vo) — 6Bygll? > — Lo (Vo(yr): k).

2¢€r6
L(¢)+o-

Thus, in order to guarantee (3);, we need £ <
On the other hand, for (3), we need

Vo)l < [26(L() + 0] + 6yl
< [26(L(g) + 02 + 5 [Lout(P)]? < o,
Hence, £ must satisfy inequality

2676 (eg—[60ut(P)]"/?)?

¢ < min{zgs T STen)
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Choice of &:
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Complexity of FGM

Choice of &: for V6 = ——S2
5 f Out1/2+25}/2
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Complexity of FGM

. . — €g ~
Choice of & for V6§ = out1/2+2e}/2 aloveret
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Complexity of FGM

Choice of & for V6§ = we get

€g ~ €g
Out!/242¢ 1/2 =~ out'/2(p)’
25fe
$X TGoum)
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Complexity of FGM

Choice of &:  for Vo =

b9 N — we get
Out!/24+2¢}/% *~ Out'/2(P)’ &

2 €f e
£~ T@ou ()
Hence, the total number of iterations for getting
(€7, €g)-solution
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Complexity of FGM

Choice of & for V6§ = we get

€g ~ €g
Out!/242¢;/> 7 Out!/2(P)’
2 €f e
€ ~ L(®) Out(P)
Hence, the total number of iterations for getting
(€f,€g)-solution is of the order

2
€f €y
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Complexity of FGM

Choice of & for V6§ = we get

€g ~ €g
Out!/242¢;/> 7 Out!/2(P)’
2 €f e
€ ~ L(®) Out(P)
Hence, the total number of iterations for getting
(€f,€g)-solution is of the order

19 (L /g( )O t1/2(73) In L(¢>)OUt(P)>‘

2
Ef Eg

This is approximately /- of that for GM.
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Complexity of FGM

. . _ €g ~
Choice of &:  for Vo = w2100 1/2 ~

25f €2
£~ L(o) Out(P)

€
Outlj’Q(P), we get

Hence, the total number of iterations for getting
(€f,€g)-solution is of the order

19 (L /g( )O t1/2(73) In L(¢>)OUt(P)>‘

2
Ef Eg

This is approximately /- of that for GM.

NB: dependence on €y is very weak.
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Complexity of FGM

Choice of & for /6 = b9 17 ~ we get

€g
Out!/242¢ Out!/2(P)’

25f €2
€ ~ L(¢) Out(P)

Hence, the total number of iterations for getting
(€f,€g)-solution is of the order

O (Ll/;(@ Out/2(P) In L(¢2?22t(7)) ) ‘
g
This is approximately /- of that for GM.
NB: dependence on €y is very weak.

Complexity of objective function enters by L(¢) = U( 7 ||A||2
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Complexity of FGM

Choice of &:  for Vo =

b9 N — we get
Out!/24+2¢}/% *~ Out'/2(P)’ &

25f €2
£~ L(o) Out(P)

Hence, the total number of iterations for getting
(€f,€g)-solution is of the order

0 (L1/2<¢>> Out'/2(P)In M)‘
€g

reg
This is approximately /- of that for GM.

NB: dependence on €y is very weak.

Complexity of objective function enters by L(¢) = U( 7 ||A||2
and Out(P).
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Example 1. Solving system of linear inequalities
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Problem: Find z: ||z]l <1 and Az =b.

Assumption:
For some € > 0 there exist & : ||#]locc <1 — € and Az = b.
New problem: f*= E;;l:nb [F(:p) def ;::1 In (1 _ (x(i))Q):|‘
Dual problem: ¢(y) = mﬂ}n[(y, Az —b) + F(x)]

— (b = 3 [VIF o - 1 - BV
Complexityl:_

m IPM(Newton): O(Out(P)) Newton iterations.

Yu. Nesterov Functions with bounded variation 17/19



Example 1. Solving system of linear inequalities

Problem: Find z: ||z]l <1 and Az =b.

Assumption:
For some € > 0 there exist & : ||#]locc <1 — € and Az = b.
New problem: f*= E;;l:nb [F(:p) def ;::1 In (1 _ (x(i))Q):|‘
Dual problem: ¢(y) = mﬂ}n[(y, Az —b) + F(x)]

— (b = 3 [VIF o - 1 - BV
Complexityl:_

m IPM(Newton): O(Out(P)) Newton iterations.
= FGM: éHAHOutl/Q(P) gradient iterations.

Yu. Nesterov Functions with bounded variation 17/19



Example 1. Solving system of linear inequalities

Problem: Find z: ||z]l <1 and Az =b.

Assumption:
For some € > 0 there exist & : ||#]locc <1 — € and Az = b.
New problem: f*= E;;l:nb [F(:p) def ;::1 In (1 _ (x(i))Q):|‘
Dual problem: ¢(y) = mﬂ}n[(y, Az —b) + F(x)]

— (b = 3 [VIF o - 1 - BV
Complexityl:_

m IPM(Newton): O(Out(P)) Newton iterations.
= FGM: éHAHOutl/Q(P) gradient iterations.

NB: Out(P)<nlni.
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Example 2. Entropy projection

Problem: min {n(x) o S 2@ Inz® : Az = O}.
TEA, ;

NB: Out(P)=Inn.

Dual problem:

P(y) = Join [—(y, Az) + n(x)]
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Problem: miAn {n(x) o S 2@ Inz® : Az = O}.
TEAR ;

NB: Out(P)=Inn.
Dual problem:

¢(y) = min [—(y, Az) + n(z)] = —In 3 el®¥) — max.
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Optimal solution y* can be very big (or do not exist).
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Example 2. Entropy projection

. def &
Problem: min {n(x) =
TEA, ;
NB: Out(P)=Inn.
Dual problem:

¢(y) = min [—(y, Az) + n(z)] = —In 3 el®¥) — max.
€A, i=1 yeER™

Optimal solution y* can be very big (or do not exist).

Complexity of dual FGM:
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Example 2. Entropy projection

Problem: miAn {n(x) o S 2@ Inz® : Az = O}.
TEAR ;

NB: Out(P)=Inn.
Dual problem:

= min [—(y. A =1 (ai,y) .
9(y) = min [={y, Az) +n(2)] = —In 3, ¥ = max

Optimal solution y* can be very big (or do not exist).
Complexity of dual FGM:

€g

1/2 . . .
O [ ™2 max ||a;l2 | gradient iterations.
1<i<n
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Conclusion

m Our complexity bounds depend on €, in an optimal way.
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Conclusion

m Our complexity bounds depend on €, in an optimal way.
m They almost do not depend on ¢y.

m This is natural since we “eliminate” f by dualization.

THANK YOU FOR YOUR ATTENTION!
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