Dual methods for functions with bounded variation

Yurii Nesterov, CORE/INMA (UCL)

November 7, 2013, Premolab (Moscow)

Joint work with A.Gasnikov (MIPT, Moscow)

Outline

- **1** Problem formulation
- **2** Bounds on the dual solution
- **3** Problems with bounded variation
- 4 Modified Gradient Methods
- 5 Fast Gradient Method
- 6 Examples

< ≣ ▶ .

Problem:

$$(\mathcal{P}): \qquad f^* \stackrel{\mathrm{def}}{=} \min_{x \in Q} \{f(x): Ax = b\},$$

< 注入 < 注入 →

Ξ.

Problem:

$$(\mathcal{P}): \qquad f^* \stackrel{\text{def}}{=} \min_{x \in Q} \{f(x): Ax = b\},$$

• $Q \subset X$ is a simple closed convex set,

ъ

Problem:

$$(\mathcal{P}): \qquad f^* \stackrel{\text{def}}{=} \min_{x \in Q} \{ f(x) : Ax = b \},$$

- $Q \subset X$ is a simple closed convex set,
- function $f(\cdot)$ is strongly convex on Q:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}\sigma(f) \|y - x\|^2, \quad x, y \in Q.$$

向下 イヨト イヨト

Problem:

$$(\mathcal{P}): \qquad f^* \stackrel{\text{def}}{=} \min_{x \in Q} \{ f(x) : Ax = b \},$$

- $Q \subset X$ is a simple closed convex set,
- function $f(\cdot)$ is strongly convex on Q:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}\sigma(f) \|y - x\|^2, \quad x, y \in Q.$$

• $A: X \to Y^*$ is a linear operator, and $b \in Y^*$.

A B > A B >

Problem:

$$(\mathcal{P}): \qquad f^* \stackrel{\text{def}}{=} \min_{x \in Q} \{f(x): Ax = b\},$$

- $Q \subset X$ is a simple closed convex set,
- function $f(\cdot)$ is strongly convex on Q:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}\sigma(f) \|y - x\|^2, \quad x, y \in Q.$$

• $A: X \to Y^*$ is a linear operator, and $b \in Y^*$.

Approximate solution: find $\bar{x} \in Q$ such that

$$f(\bar{x}) - f^* \le \epsilon_f, \quad ||A\bar{x} - b|| \le \epsilon_g.$$

Complexity of problem (\mathcal{P}) : Black Box model

Complexity of problem (\mathcal{P}) : Black Box model

Assume for a moment that all norms are Euclidean.

A B > A B >

• If
$$A \equiv \emptyset$$
, $\|\nabla f(x)\|_* \leq L$, and $x \in Q$, then we need $O\left(\frac{L^2}{\epsilon_f \sigma(f)}\right)$ iterations.

A B > A B >

• If
$$A \equiv \emptyset$$
, $\|\nabla f(x)\|_* \le L$, and $x \in Q$, then we need $O\left(\frac{L^2}{\epsilon_f \sigma(f)}\right)$ iterations.

• If
$$f \equiv \text{const}$$
, then we need $O\left(\frac{1}{\epsilon_g} \|A\| \operatorname{diam} Q\right)$ iterations.

A B > A B >

• If
$$A \equiv \emptyset$$
, $\|\nabla f(x)\|_* \le L$, and $x \in Q$, then we need $O\left(\frac{L^2}{\epsilon_f \sigma(f)}\right)$ iterations.

• If $f \equiv \text{const}$, then we need $O\left(\frac{1}{\epsilon_g} \|A\| \operatorname{diam} Q\right)$ iterations. (Minimize the squared residual by FGM).

• If
$$A \equiv \emptyset$$
, $\|\nabla f(x)\|_* \le L$, and $x \in Q$, then we need $O\left(\frac{L^2}{\epsilon_f \sigma(f)}\right)$ iterations.

• If $f \equiv \text{const}$, then we need $O\left(\frac{1}{\epsilon_g} \|A\| \operatorname{diam} Q\right)$ iterations. (Minimize the squared residual by FGM).

• Define nonsmooth functional constraint $g(x) = ||Ax - b|| \le 0.$

• If
$$A \equiv \emptyset$$
, $\|\nabla f(x)\|_* \le L$, and $x \in Q$, then we need $O\left(\frac{L^2}{\epsilon_f \sigma(f)}\right)$ iterations.

• If $f \equiv \text{const}$, then we need $O\left(\frac{1}{\epsilon_g} \|A\| \operatorname{diam} Q\right)$ iterations. (Minimize the squared residual by FGM).

Define nonsmooth functional constraint

$$g(x) = ||Ax - b|| \le 0.$$

Standard subgradient method ensures

$$O\left(\left[\frac{L}{\epsilon_f} + \frac{\|A\|}{\epsilon_g}\right]^2 \operatorname{diam}^2 Q\right)$$
 iterations.

프 문 문 프 문

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$.

э

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\text{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\text{def}}{=} \sup_{y \in Y} \phi(y).$$

э

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\text{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\text{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$:

(*) *) *) *)

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in Q$ is uniquely defined.

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in O$ is uniquely defined. Its readiant is

where the point $x(y) \in Q$ is uniquely defined. Its gradient is Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

御 と く ヨ と く ヨ と

-

Define the Lagrangian $\mathcal{L}(x, y) = f(x) + \langle b - Ax, y \rangle$. The dual problem is as follows:

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in Q$ is uniquely defined. Its gradient is

Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

But:

-

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in O$ is uniquely defined. Its readicate is

where the point $x(y) \in Q$ is uniquely defined. Its gradient is Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

But: the standard complexity bounds of GMs depend on y^* :

周 ト イヨ ト イヨ ト 二 ヨ

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in Q$ is uniquely defined. Its gradient is
Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

But: the standard complexity bounds of GMs depend on y^* : Choosing $y_0 = 0$,

周 ト イヨ ト イヨ ト 二 ヨ

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in Q$ is uniquely defined. Its gradient is
Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

But: the standard complexity bounds of GMs depend on y^* : Choosing $y_0 = 0$, we have $\phi(y^*) - \phi(y_k) \leq \frac{4L(\phi)||y^*||^2}{(k+1)^2}$.

$$\phi(y) \stackrel{\mathrm{def}}{=} \min_{x \in Q} \mathcal{L}(x, y), \quad \phi^* \stackrel{\mathrm{def}}{=} \sup_{y \in Y} \phi(y).$$

NB: This is useful only if $\phi(y)$ can be easily computed.

Since f is strongly convex, $\phi(y)$ is well defined for any $y \in Y$: $\phi(y) = \mathcal{L}(x(y), y), \quad \nabla \phi(y) = b - Ax(y), \quad y \in Y,$ where the point $x(y) \in Q$ is uniquely defined. Its gradient is
Lipschitz continuous with $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$.

But: the standard complexity bounds of GMs depend on y^* : Choosing $y_0 = 0$, we have $\phi(y^*) - \phi(y_k) \leq \frac{4L(\phi) ||y^*||^2}{(k+1)^2}$. **NB:** $||y^*||$ can be big!

周 ト イヨ ト イヨ ト 二 ヨ

★ E > < E >

₽.

Let $E = R^2$, and $||x|| \equiv ||x||_2$.

문어 문

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$

★御▶ ★理▶ ★理▶

æ.

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2$

we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1$.

,

★ 문 ► ★ 문 ► _ 문

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2,$
we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1.$
Thus, $\phi(y) = \frac{1}{2} (||\hat{x}(y)|| - 1)^2 + y - \frac{1}{2}y^2 = 1 - \frac{1}{y + \sqrt{1 + y^2}}.$

문어 비원어

₽.

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2,$
we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1.$
Thus, $\phi(y) = \frac{1}{2} (||\hat{x}(y)|| - 1)^2 + y - \frac{1}{2}y^2 = 1 - \frac{1}{y + \sqrt{1 + y^2}}.$

• No duality gap and $\phi(y) \to f^* = 1$ as $y \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2,$
we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1.$
Thus, $\phi(y) = \frac{1}{2} (||\hat{x}(y)|| - 1)^2 + y - \frac{1}{2}y^2 = 1 - \frac{1}{y + \sqrt{1 + y^2}}.$
• No duality gap and $\phi(y) \to f^* = 1$ as $y \to \infty$.
• $x(y) \to x^* = e_1$ as $y \to \infty$.

・四・ ・ヨ・ ・ヨ・

æ.

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2$
we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1$.
Thus, $\phi(y) = \frac{1}{2} (||\hat{x}(y)|| - 1)^2 + y - \frac{1}{2}y^2 = 1 - \frac{1}{y + \sqrt{1 + y^2}}.$

• No duality gap and $\phi(y) \to f^* = 1$ as $y \to \infty$.

•
$$x(y) \to x^* = e_1 \text{ as } y \to \infty$$

• Optimal solution does not exist.

同下 イヨト イヨト

,

Let
$$E = R^2$$
, and $||x|| \equiv ||x||_2$. Consider the problem

$$\min_x \left\{ f(x) = \frac{1}{2} ||x - e_2||^2 : x^{(1)} = 1, ||x|| \le 1 \right\}.$$
Defining the Lagrangian
 $\mathcal{L}(x, y) = \frac{1}{2} ||x - e_2||^2 + y(1 - x^{(1)}) = \frac{1}{2} ||x - e_2 - ye_1||^2 + y - \frac{1}{2}y^2,$

we get $x(y) = \hat{x}(y) / ||\hat{x}(y)||$, where $\hat{x}(y) = e_2 + ye_1$.

Thus, $\phi(y) = \frac{1}{2}(\|\hat{x}(y)\| - 1)^2 + y - \frac{1}{2}y^2 = 1 - \frac{1}{y + \sqrt{1 + y^2}}.$

• No duality gap and $\phi(y) \to f^* = 1$ as $y \to \infty$.

•
$$x(y) \to x^* = e_1 \text{ as } y \to \infty.$$

• Optimal solution does not exist. Rate of convergence of the standard dual GMs = ?

(四) (日) (日) (日) (日)

Bounding the dual solution

æ

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

 $A\bar{x} = b$ and $B(\bar{x}, \rho) \subseteq Q$.

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

 $A\bar{x} = b$ and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$.

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0 \text{ such that}$

 $A\bar{x} = b$ and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. Proof: since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$,

- A B N A B N

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D)||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$, for all $x \in Q$ we have

$$0 \leq \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle$$

- A B N A B N

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \leq (1 + \frac{1}{\rho}D)||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \geq 0$, for all $x \in Q$ we have

$$0 \leq \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle$$

= $\langle \nabla f(x^*), \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle.$

- A B N A B N

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$, for all $x \in Q$ we have

$$0 \leq \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle$$

= $\langle \nabla f(x^*), \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle.$

Restricting ourselves to $x \in B(\bar{x}, \rho)$, we obtain

$$\rho \|\nabla f(x^*) - A^T y^*\|_* \le \langle \nabla f(x^*), \bar{x} - x^* \rangle \le \|\nabla f(x^*)\|_* \cdot D.$$

御 と く ヨ と く ヨ と

-

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$, for all $x \in Q$ we have

$$\begin{array}{rcl} 0 & \leq & \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle \\ & = & \langle \nabla f(x^*), \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle. \end{array}$$

Restricting ourselves to $x \in B(\bar{x}, \rho)$, we obtain

$$\rho \|\nabla f(x^*) - A^T y^*\|_* \le \langle \nabla f(x^*), \bar{x} - x^* \rangle \le \|\nabla f(x^*)\|_* \cdot D.$$

Hence, $\|\nabla f(x^*)\|_* \cdot D \ge \rho \|A^T y^*\|_* - \rho \|\nabla f(x^*)\|_*.$

-

Assumption 1: $\exists \bar{x} \text{ and a radius } \rho > 0$ such that

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$, for all $x \in Q$ we have

$$\begin{array}{rcl} 0 & \leq & \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle \\ & = & \langle \nabla f(x^*), \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle. \end{array}$$

Restricting ourselves to $x \in B(\bar{x}, \rho)$, we obtain

$$\rho \|\nabla f(x^*) - A^T y^*\|_* \le \langle \nabla f(x^*), \bar{x} - x^* \rangle \le \|\nabla f(x^*)\|_* \cdot D.$$

Hence, $\|\nabla f(x^*)\|_* \cdot D \ge \rho \|A^T y^*\|_* - \rho \|\nabla f(x^*)\|_*.$ **NB:** We need $\|\nabla f(x)\|_* \le \text{const.}$

Assumption 1: $\exists \bar{x} \text{ and } a \text{ radius } \rho > 0 \text{ such that}$

$$A\bar{x} = b$$
 and $B(\bar{x}, \rho) \subseteq Q$.

Lemma. $||A^T y^*|| \le (1 + \frac{1}{\rho}D) ||\nabla f(x^*)||_*$, where $D = \operatorname{diam} Q$. **Proof:** since $\langle \nabla f(x^*) - A^T y^*, x - x^* \rangle \ge 0$, for all $x \in Q$ we have

$$\begin{array}{rcl} 0 & \leq & \langle \nabla f(x^*) - A^T y^*, \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle \\ & = & \langle \nabla f(x^*), \bar{x} - x^* \rangle + \langle \nabla f(x^*) - A^T y^*, x - \bar{x} \rangle. \end{array}$$

Restricting ourselves to $x \in B(\bar{x}, \rho)$, we obtain

$$\rho \|\nabla f(x^*) - A^T y^*\|_* \le \langle \nabla f(x^*), \bar{x} - x^* \rangle \le \|\nabla f(x^*)\|_* \cdot D.$$

Hence, $\|\nabla f(x^*)\|_* \cdot D \ge \rho \|A^T y^*\|_* - \rho \|\nabla f(x^*)\|_*$. **NB:** We need $\|\nabla f(x)\|_* \le \text{const.}$ (This may not happen.)

Problems with bounded variation

문어 문

< ∃ > <

Problems with bounded variation

Assume that problem (\mathcal{P}) is solvable.

∃ ▶ ∢

$$\operatorname{Out}(\mathcal{P}) = \min_{x \in Q} \{ f(x) : Ax = b \} - \min_{x \in Q} f(x).$$

< ∃ > <

$$\operatorname{Out}(\mathcal{P}) = \min_{x \in Q} \{ f(x) : Ax = b \} - \min_{x \in Q} f(x).$$

Since f is strongly convex, this value is finite.

$$\operatorname{Out}(\mathcal{P}) = \min_{x \in Q} \{ f(x) : Ax = b \} - \min_{x \in Q} f(x).$$

Since f is strongly convex, this value is finite. On the other hand, $\phi(0) = \min_{x \in Q} f(x) \stackrel{\text{def}}{=} f(x_*)$, and

$$\phi(y) \leq \mathcal{L}(x^*, y) = f^*, \quad y \in Y, \tag{1}$$

$$\operatorname{Out}(\mathcal{P}) = \min_{x \in Q} \{ f(x) : Ax = b \} - \min_{x \in Q} f(x).$$

Since f is strongly convex, this value is finite. On the other hand, $\phi(0) = \min_{x \in Q} f(x) \stackrel{\text{def}}{=} f(x_*)$, and

$$\phi(y) \leq \mathcal{L}(x^*, y) = f^*, \quad y \in Y, \tag{1}$$

Thus, function ϕ has a bounded *central* variation on Y:

$$\phi^* - \phi(0) = \operatorname{Out}(\mathcal{P}) < +\infty.$$
 (2)

$$\operatorname{Out}(\mathcal{P}) = \min_{x \in Q} \{ f(x) : Ax = b \} - \min_{x \in Q} f(x).$$

Since f is strongly convex, this value is finite. On the other hand, $\phi(0) = \min_{x \in Q} f(x) \stackrel{\text{def}}{=} f(x_*)$, and

$$\phi(y) \leq \mathcal{L}(x^*, y) = f^*, \quad y \in Y, \tag{1}$$

Thus, function ϕ has a bounded *central* variation on Y:

$$\phi^* - \phi(0) = \operatorname{Out}(\mathcal{P}) < +\infty.$$
(2)

We study numerical schemes for maximizing dual functions satisfying assumption (2).

Termination criterion

돈에 세종에

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g$$
,

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3).

4 B K 4 B K

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

 $x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition,

ъ

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$.

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$. Moreover, $f(x(\bar{y})) + \langle b - Ax(\bar{y}), \bar{y} \rangle$

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$. Moreover,

$$f(x(\bar{y})) + \langle b - Ax(\bar{y}), \bar{y} \rangle \le f(x^*) + \langle b - Ax^*, \bar{y} \rangle$$

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$. Moreover,

$$f(x(\bar{y})) + \langle b - Ax(\bar{y}), \bar{y} \rangle \le f(x^*) + \langle b - Ax^*, \bar{y} \rangle = f^*.$$

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$. Moreover,

$$f(x(\bar{y})) + \langle b - Ax(\bar{y}), \bar{y} \rangle \le f(x^*) + \langle b - Ax^*, \bar{y} \rangle = f^*.$$

Hence, $f(x(\bar{y})) \leq f^* - \langle \nabla \phi(\bar{y}), \bar{y} \rangle$

a)
$$\|\nabla \phi(\bar{y})\|_* \leq \epsilon_g,$$

b) $\langle \nabla \phi(\bar{y}), \bar{y} \rangle \geq -\epsilon_f.$
(3)

Lemma. Let point $\bar{y} \in Y$ satisfy conditions (3). Then

$$x(\bar{y}) \in Q, \quad ||Ax(\bar{y}) - b|| \le \epsilon_g, \quad f(x(\bar{y})) \le f^* + \epsilon_f.$$

Proof. Indeed, the point $x(\bar{y})$ belongs to Q by definition, and $\nabla \phi(\bar{y}) = b - Ax(\bar{y})$. Moreover,

$$f(x(\bar{y})) + \langle b - Ax(\bar{y}), \bar{y} \rangle \leq f(x^*) + \langle b - Ax^*, \bar{y} \rangle = f^*.$$

Hence, $f(x(\bar{y})) \leq f^* - \langle \nabla \phi(\bar{y}), \bar{y} \rangle \stackrel{(3)_b}{\leq} f^* + \epsilon_f.$

Range of accuracy for the norm of the gradient

$$\epsilon_g^2 \leq ||Ax_* - b||^2$$

$$\epsilon_g^2 \leq ||Ax_* - b||^2 = ||A(x_* - x^*)||^2$$

$$\epsilon_g^2 \leq ||Ax_* - b||^2 = ||A(x_* - x^*)||^2 \leq ||A||^2 ||x_* - x^*||^2$$

$$\begin{aligned} \epsilon_g^2 &\leq \|Ax_* - b\|^2 &= \|A(x_* - x^*)\|^2 \leq \|A\|^2 \|x_* - x^*\|^2 \\ &\leq \frac{2}{\sigma(f)} \|A\|^2 (f(x^*) - f(x_*)) \end{aligned}$$

Conditions (3) with any $\epsilon_f \ge 0$ and $\epsilon_g \ge ||Ax_* - b||$ are satisfied by $\bar{y} = 0$.

Therefore, we always assume that

$$\begin{aligned} \epsilon_g^2 &\leq \|Ax_* - b\|^2 &= \|A(x_* - x^*)\|^2 \leq \|A\|^2 \|x_* - x^*\|^2 \\ &\leq \frac{2}{\sigma(f)} \|A\|^2 (f(x^*) - f(x_*)) &= 2 L(\phi) \operatorname{Out}(\mathcal{P}). \end{aligned}$$

Modified Gradient Method

Ξ.

-

Modified Gradient Method

Since ϕ has Lipschitz continuous gradients, we can maximize it by a version of GM.

э

э

Modified Gradient Method

Modified Gradient Method

1. Choose
$$y'_k = \arg \max_y \left[\langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2} L(\phi) \|y - y_k\|^2 \right].$$

Modified Gradient Method

1. Choose
$$y'_k = \arg \max_y \left[\langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2} L(\phi) \|y - y_k\|^2 \right].$$

2. Define $y_{k+1} = t_k y'_k$, where $t_k \in (0, 1]$ is such that

Modified Gradient Method

1. Choose
$$y'_k = \arg \max_y \left[\langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2} L(\phi) \|y - y_k\|^2 \right].$$

2. Define $y_{k+1} = t_k y'_k$, where $t_k \in (0, 1]$ is such that

$$\phi(y_{k+1}) \ge \phi(y'_k), \quad \langle \nabla \phi(y_{k+1}), y_{k+1} \rangle \ge -\epsilon_f.$$

Modified Gradient Method

1. Choose
$$y'_k = \arg \max_y \left[\langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2} L(\phi) \|y - y_k\|^2 \right].$$

2. Define $y_{k+1} = t_k y'_k$, where $t_k \in (0, 1]$ is such that

$$\phi(y_{k+1}) \ge \phi(y'_k), \quad \langle \nabla \phi(y_{k+1}), y_{k+1} \rangle \ge -\epsilon_f.$$

Yu. Nesterov Functions with bounded variation 12/19

э

Ξ.

Theorem.

э

Ξ.

Theorem. GM is well defined. For any $k \ge 0$ we have

э

Theorem. GM is well defined. For any $k \ge 0$ we have $\phi(y_{k+1}) - \phi(y_k) \ge \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$ (4)

э.

Theorem. GM is well defined. For any $k \ge 0$ we have $\phi(y_{k+1}) - \phi(y_k) \ge \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$,

(4)

4 E 6 4 E 6

э

Theorem. GM is well defined. For any $k \ge 0$ we have $\phi(y_{k+1}) - \phi(y_k) \ge \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2$. (4) Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and $\sum_{k=0}^N \|\nabla \phi(y_k)\|_*^2$

ъ

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla\phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

э.

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla\phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof.

э.

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient,

4 E 6 4 E 6

э

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

레이 에도이 에도이 드

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have $\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) ||y - y_k||^2, \quad y \in Y.$ Substituting in this inequality $y = y'_k$,

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k)$

高 ト イヨ ト イヨ ト

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$

高 ト イヨ ト イヨ ト

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k).$

伺下 イラト イラト

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle.$

高 ト イヨ ト イヨ ト

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \ge -\epsilon_f$, then $t_k = 1$.

伺 と く ヨ と く ヨ と …

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \ge -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$.

伺 と く ヨ と く ヨ と …

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \le \phi(y'_k) - \phi(y_k) \le \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \ge -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0)$

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \leq \phi(y'_k) - \phi(y_k) \leq \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \geq -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0) \geq \theta(1) - \theta(0)$

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \leq \phi(y'_k) - \phi(y_k) \leq \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \geq -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0) \geq \theta(1) - \theta(0) = \phi(y'_k) - \phi(0)$

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2 \leq \phi(y'_k) - \phi(y_k) \leq \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \geq -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0) \geq \theta(1) - \theta(0) = \phi(y'_k) - \phi(0) \geq \phi(y_k) - \phi(0)$

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get $\frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|^2_* \leq \phi(y'_k) - \phi(y_k) \leq \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla \phi(ty'_k), y'_k \rangle$. If $\theta'(1) \geq -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0) \geq \theta(1) - \theta(0) = \phi(y'_k) - \phi(0) \geq \phi(y_k) - \phi(0) \geq 0.$

$$\phi(y_{k+1}) - \phi(y_k) \geq \frac{1}{2L(\phi)} \|\nabla \phi(y_k)\|_*^2.$$
 (4)

Consequently, $\phi(y_k) \ge \phi(0)$ for all $k \ge 0$, and

$$\sum_{k=0}^{N} \|\nabla \phi(y_k)\|_*^2 \leq 2L(\phi) \operatorname{Out}(\mathcal{P}).$$
(5)

Proof. Since ϕ has Lipschitz-continuous gradient, we have

$$\phi(y) \geq \phi(y_k) + \langle \nabla \phi(y_k), y - y_k \rangle - \frac{1}{2}L(\phi) \|y - y_k\|^2, \quad y \in Y.$$

Substituting in this inequality $y = y'_k$, we get

 $\frac{1}{2L(\phi)} \|\nabla\phi(y_k)\|_*^2 \leq \phi(y'_k) - \phi(y_k) \leq \phi(y_{k+1}) - \phi(y_k).$ Consider $\theta(t) = \phi(ty'_k)$. Note that $\theta'(t) = \langle \nabla\phi(ty'_k), y'_k \rangle$. If $\theta'(1) \geq -\epsilon_f$, then $t_k = 1$. Assume $\theta'(1) < -\epsilon_f$. Note that $\theta'(0) \geq \theta(1) - \theta(0) = \phi(y'_k) - \phi(0) \geq \phi(y_k) - \phi(0) \geq 0$.

Thus, conditions of Item 2 can be satisfied by bisection.

э

Ξ.

Denote $k_{\#} = \arg\min_{i} \{ \|\nabla \phi(y_i)\|_* : 0 \le i \le k \}.$

э

Denote
$$k_{\#} = \arg\min_{i} \{ \|\nabla \phi(y_i)\|_* : 0 \le i \le k \}.$$

Corollary: $\|\nabla \phi(y_{k_{\#}})\|_* \le \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \ge 0.$

э

Ξ.

Denote $k_{\#} = \arg\min_{i} \{ \|\nabla \phi(y_{i})\|_{*} : 0 \le i \le k \}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_{*} \le \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \ge 0.$ Hence, for satisfying conditions (3),

Denote
$$k_{\#} = \arg\min_{i} \{ \|\nabla\phi(y_{i})\|_{*} : 0 \le i \le k \}.$$

Corollary: $\|\nabla\phi(y_{k_{\#}})\|_{*} \le \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \ge 0.$
Hence, for satisfying conditions (3), we need at most
 $N_{\epsilon_{g}} \stackrel{\text{def}}{=} \frac{2}{\epsilon_{q}^{2}}L(\phi)\operatorname{Out}(\mathcal{P})$ iterations. (6)

Denote
$$k_{\#} = \arg\min_{i} \{ \|\nabla\phi(y_{i})\|_{*} : 0 \le i \le k \}.$$

Corollary: $\|\nabla\phi(y_{k_{\#}})\|_{*} \le \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \ge 0.$
Hence, for satisfying conditions (3), we need at most
 $N_{\epsilon_{g}} \stackrel{\text{def}}{=} \frac{2}{\epsilon_{g}^{2}}L(\phi)\operatorname{Out}(\mathcal{P})$ iterations. (6)

Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k .

Denote $k_{\#} = \arg\min_{i} \{ \|\nabla\phi(y_{i})\|_{*} : 0 \leq i \leq k \}.$ **Corollary:** $\|\nabla\phi(y_{k_{\#}})\|_{*} \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_{g}} \stackrel{\text{def}}{=} \frac{2}{\epsilon_{g}^{2}}L(\phi)\operatorname{Out}(\mathcal{P})$ iterations. (6) Complexity of 1D-max. of $\phi(ty'_{k})$ depends on the size of y'_{k} . **Lemma.** $\|y_{k+1}\| \leq \|y'_{k}\| \leq \left[\frac{k+1}{2L(\phi)}\operatorname{Out}(\mathcal{P})\right]^{1/2}.$

Denote $k_{\#} = \arg\min_{i} \{ \|\nabla\phi(y_{i})\|_{*} : 0 \leq i \leq k \}.$ **Corollary:** $\|\nabla\phi(y_{k_{\#}})\|_{*} \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_{g}} \stackrel{\text{def}}{=} \frac{2}{\epsilon_{g}^{2}}L(\phi)\operatorname{Out}(\mathcal{P})$ iterations. (6) Complexity of 1D-max. of $\phi(ty'_{k})$ depends on the size of y'_{k} . **Lemma.** $\|y_{k+1}\| \leq \|y'_{k}\| \leq \left[\frac{k+1}{2L(\phi)}\operatorname{Out}(\mathcal{P})\right]^{1/2}.$ **Proof.**

Denote $k_{\#} = \arg\min_{i} \{ \|\nabla\phi(y_{i})\|_{*} : 0 \leq i \leq k \}.$ **Corollary:** $\|\nabla\phi(y_{k_{\#}})\|_{*} \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_{g}} \stackrel{\text{def}}{=} \frac{2}{\epsilon_{g}^{2}}L(\phi)\operatorname{Out}(\mathcal{P})$ iterations. (6) Complexity of 1D-max. of $\phi(ty'_{k})$ depends on the size of y'_{k} . **Lemma.** $\|y_{k+1}\| \leq \|y'_{k}\| \leq \left[\frac{k+1}{2L(\phi)}\operatorname{Out}(\mathcal{P})\right]^{1/2}.$ **Proof.** Since $t_{k} \leq 1$,

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left[\frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P})\right]^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}||$

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left[\frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P})\right]^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k||$

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left[\frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P})\right]^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k|| \le ||y_k|| + \frac{1}{2L(\phi)} ||\nabla \phi(y_k)||_*.$

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left\lceil \frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P}) \right\rceil^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k|| \le ||y_k|| + \frac{1}{2L(\phi)} ||\nabla \phi(y_k)||_*.$ Hence, $||y_{k+1}|| \le \frac{1}{2L(\phi)} \sum_{i=0}^{k} ||\nabla \phi(y_k)||_*.$

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left\lceil \frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P}) \right\rceil^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k|| \le ||y_k|| + \frac{1}{2L(\phi)} ||\nabla \phi(y_k)||_*.$ Hence, $||y_{k+1}|| \le \frac{1}{2L(\phi)} \sum_{i=0}^{k} ||\nabla \phi(y_k)||_*$. It remains to use (5). Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left\lceil \frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P}) \right\rceil^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k|| \le ||y_k|| + \frac{1}{2L(\phi)} ||\nabla \phi(y_k)||_*.$ Hence, $||y_{k+1}|| \le \frac{1}{2L(\phi)} \sum_{i=0}^{k} ||\nabla \phi(y_k)||_*$. It remains to use (5). Substituting in this bound the iteration bound (6),

Denote $k_{\#} = \arg\min\{\|\nabla\phi(y_i)\|_* : 0 \le i \le k\}.$ **Corollary:** $\|\nabla \phi(y_{k_{\#}})\|_* \leq \left[\frac{2}{k+1}L(\phi)\operatorname{Out}(\mathcal{P})\right]^{1/2}, k \geq 0.$ Hence, for satisfying conditions (3), we need at most $N_{\epsilon_g} \stackrel{\text{def}}{=} \frac{2}{\epsilon^2} L(\phi) \operatorname{Out}(\mathcal{P})$ iterations. (6)Complexity of 1D-max. of $\phi(ty'_k)$ depends on the size of y'_k . **Lemma.** $||y_{k+1}|| \le ||y'_k|| \le \left\lceil \frac{k+1}{2L(\phi)} \operatorname{Out}(\mathcal{P}) \right\rceil^{1/2}$. **Proof.** Since $t_k < 1$, $||y_{k+1}|| \le ||y'_k|| \le ||y_k|| + \frac{1}{2L(\phi)} ||\nabla \phi(y_k)||_*.$ Hence, $||y_{k+1}|| \le \frac{1}{2L(\phi)} \sum_{i=0}^{k} ||\nabla \phi(y_k)||_*$. It remains to use (5). Substituting in this bound the iteration bound (6), we obtain $\|y_{k+1}\| \leq \frac{1}{\epsilon_a} \operatorname{Out}(\mathcal{P}), \quad 0 \leq k \leq N_{\epsilon_a}.$

문어 문

< ∃ > <

Let us choose $B \succ 0$.

문 > 문

< ∃ > <

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q ()

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$.

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$.

A B M A B M

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution.

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that ϕ_{δ}^*

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2$

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$.

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$. Therefore, $\frac{\delta}{2} ||y_{\delta}^*||^2$

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$.

Therefore, $\frac{\delta}{2} \|y_{\delta}^*\|^2 \le \phi_{\delta}^* - \phi_{\delta}(0)$

Let us choose $B \succ 0$. Define $\|y\| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} \|y\|^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} \|y_{\delta}^*\|^2 \le \phi^* - \frac{\delta}{2} \|y_{\delta}^*\|^2$. Therefore, $\frac{\delta}{2} \|y_{\delta}^*\|^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \operatorname{Out}(\mathcal{P}) - \frac{\delta}{2} \|y_{\delta}^*\|^2$.

Let us choose $B \succ 0$. Define $\|y\| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} \|y\|^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} \|y_{\delta}^*\|^2 \le \phi^* - \frac{\delta}{2} \|y_{\delta}^*\|^2$. Therefore, $\frac{\delta}{2} \|y_{\delta}^*\|^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \operatorname{Out}(\mathcal{P}) - \frac{\delta}{2} \|y_{\delta}^*\|^2$. **NB:** $L(\phi_{\delta}) = L(\phi) + \delta$, and $\sigma(\phi_{\delta}) = \delta$.

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$. Therefore, $\frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \operatorname{Out}(\mathcal{P}) - \frac{\delta}{2} ||y_{\delta}^*||^2$. **NB:** $L(\phi_{\delta}) = L(\phi) + \delta$, and $\sigma(\phi_{\delta}) = \delta$.

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$. Therefore, $\frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \operatorname{Out}(\mathcal{P}) - \frac{\delta}{2} ||y_{\delta}^*||^2$. **NB:** $L(\phi_{\delta}) = L(\phi) + \delta$, and $\sigma(\phi_{\delta}) = \delta$.

$$y_{k+1} = u_k + \frac{1}{L(\phi) + \delta} B^{-1} \nabla \phi_\delta(u_k),$$

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$. Therefore, $\frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \text{Out}(\mathcal{P}) - \frac{\delta}{2} ||y_{\delta}^*||^2$. **NB:** $L(\phi_{\delta}) = L(\phi) + \delta$, and $\sigma(\phi_{\delta}) = \delta$.

$$y_{k+1} = u_k + \frac{1}{L(\phi) + \delta} B^{-1} \nabla \phi_{\delta}(u_k),$$

$$u_{k+1} = y_{k+1} + \kappa (y_{k+1} - y_k),$$

Let us choose $B \succ 0$. Define $||y|| = \langle By, y \rangle^{1/2}$. For a fixed $\delta > 0$, denote $\phi_{\delta}(y) = \phi(y) - \frac{\delta}{2} ||y||^2$. **Problem:** $\phi_{\delta}^* \stackrel{\text{def}}{=} \max_{y \in Y} \phi_{\delta}(y)$. Denote by y_{δ}^* its unique optimal solution. Note that $\phi_{\delta}^* = \phi(y_{\delta}^*) - \frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi^* - \frac{\delta}{2} ||y_{\delta}^*||^2$. Therefore, $\frac{\delta}{2} ||y_{\delta}^*||^2 \le \phi_{\delta}^* - \phi_{\delta}(0) \stackrel{(2)}{\le} \operatorname{Out}(\mathcal{P}) - \frac{\delta}{2} ||y_{\delta}^*||^2$. **NB:** $L(\phi_{\delta}) = L(\phi) + \delta$, and $\sigma(\phi_{\delta}) = \delta$.

$$\begin{split} y_{k+1} &= u_k + \frac{1}{L(\phi) + \delta} B^{-1} \nabla \phi_{\delta}(u_k), \\ u_{k+1} &= y_{k+1} + \kappa (y_{k+1} - y_k), \\ \end{split}$$
 where $\kappa = \frac{[L(\phi) + \delta]^{1/2} - \delta^{1/2}}{[L(\phi) + \delta]^{1/2} + \delta^{1/2}}.$

э

Ξ.

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

э

Ξ.

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k)$$

* 3 * * 3

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{rac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P})$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

(*) *) *) *)

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P})$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$
$$= \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2$$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P})$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$.

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$. On the other hand, for $(3)_a$ we need

 $\|\nabla\phi(y_k)\|_*$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$. On the other hand, for $(3)_a$ we need

$$\|\nabla\phi(y_k)\|_* \leq [2\xi(L(\phi)+\delta)]^{1/2} + \delta\|y_k\|$$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$. On the other hand, for $(3)_a$ we need

$$\begin{aligned} \|\nabla\phi(y_k)\|_* &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \|y_k\| \\ &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \left[\frac{1}{\delta} \operatorname{Out}(\mathcal{P})\right]^{1/2} \end{aligned}$$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P}).$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$. On the other hand, for $(3)_a$ we need

$$\begin{aligned} \|\nabla\phi(y_k)\|_* &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \|y_k\| \\ &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \left[\frac{1}{\delta} \operatorname{Out}(\mathcal{P})\right]^{1/2} \leq \epsilon_g. \end{aligned}$$

$$\phi_{\delta}^* - \phi_{\delta}(y_k) \leq 2 \exp\left(-k\sqrt{\frac{\delta}{L(\phi)+\delta}}\right) \cdot \operatorname{Out}(\mathcal{P})$$

Thus, for any $\xi > 0$ and k large enough, we can ensure

$$\xi \geq \phi_{\delta}^* - \phi_{\delta}(y_k) \geq \frac{1}{2(L(\phi) + \delta)} \|\nabla \phi_{\delta}(y_k)\|_*^2$$

=
$$\frac{1}{2(L(\phi) + \delta)} \|\nabla \phi(y_k) - \delta B y_k\|_*^2 \geq -\frac{2\delta}{L(\phi) + \delta} \langle \nabla \phi(y_k), y_k \rangle.$$

Thus, in order to guarantee $(3)_b$, we need $\xi \leq \frac{2\epsilon_f \delta}{L(\phi) + \delta}$. On the other hand, for $(3)_a$ we need

$$\begin{aligned} \|\nabla\phi(y_k)\|_* &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \|y_k\| \\ &\leq \quad [2\xi(L(\phi)+\delta)]^{1/2} + \delta \left[\frac{1}{\delta} \operatorname{Out}(\mathcal{P})\right]^{1/2} \leq \epsilon_g. \end{aligned}$$

Hence, ξ must satisfy inequality

$$\xi \leq \min\{\frac{2\epsilon_f \delta}{L(\phi) + \delta}, \frac{(\epsilon_g - [\delta \operatorname{Out}(\mathcal{P})]^{1/2})^2}{2(L(\phi) + \delta)}\}.$$

э

Ξ.

Choice of ξ :

э

Ξ.

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}}$

프 문 문 프 문

2

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$,

э

Ξ.

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}$.

э

Ξ.

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

Hence, the total number of iterations for getting $(\epsilon_f, \epsilon_g)\text{-solution}$

∃ ► < ∃ ►</p>

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

This is approximately $\sqrt{\cdot}$ of that for GM.

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

This is approximately $\sqrt{\cdot}$ of that for GM.

NB: dependence on ϵ_f is very weak.

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

This is approximately $\sqrt{\cdot}$ of that for GM.

NB: dependence on ϵ_f is very weak.

Complexity of objective function enters by $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$,

Choice of
$$\xi$$
: for $\sqrt{\delta} = \frac{\epsilon_g}{\operatorname{Out}^{1/2} + 2\epsilon_f^{1/2}} \approx \frac{\epsilon_g}{\operatorname{Out}^{1/2}(\mathcal{P})}$, we get $\xi \approx \frac{2\epsilon_f \epsilon_g^2}{L(\phi)\operatorname{Out}(\mathcal{P})}.$

This is approximately $\sqrt{\cdot}$ of that for GM.

NB: dependence on ϵ_f is very weak.

Complexity of objective function enters by $L(\phi) = \frac{1}{\sigma(f)} ||A||^2$, and $Out(\mathcal{P})$.

Problem: Find $x : ||x||_{\infty} \le 1$ and Ax = b.

Problem: Find $x : ||x||_{\infty} \le 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

→ Ξ →

Problem: Find $x : ||x||_{\infty} \leq 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

New problem:
$$f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln\left(1 - (x^{(i)})^2\right) \right].$$

→ Ξ →

Problem: Find $x : ||x||_{\infty} \leq 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

New problem:
$$f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln\left(1 - (x^{(i)})^2\right) \right].$$

Dual problem:

Problem: Find $x : ||x||_{\infty} \le 1$ and Ax = b. **Assumption:** For some $\hat{\epsilon} > 0$ there exist $\hat{x} : ||\hat{x}||_{\infty} \le 1 - \hat{\epsilon}$ and $A\hat{x} = b$. **New problem:** $f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln \left(1 - (x^{(i)})^2\right) \right]$. **Dual problem:** $\phi(y) = \min_x [\langle y, Ax - b \rangle + F(x)]$

Problem: Find x: $||x||_{\infty} \leq 1$ and Ax = b. **Assumption:** For some $\hat{\epsilon} > 0$ there exist \hat{x} : $||\hat{x}||_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$. **New problem:** $f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln \left(1 - (x^{(i)})^2\right) \right]$. **Dual problem:** $\phi(y) = \min_x [\langle y, Ax - b \rangle + F(x)]$ $= -\langle b, y \rangle - \sum_{i=1}^n \left[\sqrt{1 + \langle a_i, y \rangle^2} - 1 - \ln \frac{1 + \sqrt{1 + \langle a_i, y \rangle^2}}{2} \right] \rightarrow \max_y$.

Problem: Find x: $||x||_{\infty} \leq 1$ and Ax = b. **Assumption:** For some $\hat{\epsilon} > 0$ there exist \hat{x} : $||\hat{x}||_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$. **New problem:** $f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln \left(1 - (x^{(i)})^2\right) \right]$. **Dual problem:** $\phi(y) = \min_x [\langle y, Ax - b \rangle + F(x)]$ $= -\langle b, y \rangle - \sum_{i=1}^n \left[\sqrt{1 + \langle a_i, y \rangle^2} - 1 - \ln \frac{1 + \sqrt{1 + \langle a_i, y \rangle^2}}{2} \right] \rightarrow \max_y$.

Complexity:

Problem: Find $x : ||x||_{\infty} \le 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

New problem:
$$f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln\left(1 - (x^{(i)})^2\right) \right].$$

 $\begin{array}{ll} \textbf{Dual problem:} \quad \phi(y) = \min_{x} [\langle y, Ax - b \rangle + F(x)] \\ = -\langle b, y \rangle - \sum_{i=1}^{n} \left[\sqrt{1 + \langle a_i, y \rangle^2} - 1 - \ln \frac{1 + \sqrt{1 + \langle a_i, y \rangle^2}}{2} \right] \ \rightarrow \ \max_{y}. \end{array}$

Complexity:

IPM(Newton): $O(Out(\mathcal{P}))$ Newton iterations.

御 と く ヨ と く ヨ と

Problem: Find $x : ||x||_{\infty} \leq 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

New problem:
$$f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln \left(1 - (x^{(i)})^2 \right) \right].$$

Dual problem: $\phi(y) = \min_{x} [\langle y, Ax - b \rangle + F(x)]$ = $-\langle b, y \rangle - \sum_{i=1}^{n} \left[\sqrt{1 + \langle a_i, y \rangle^2} - 1 - \ln \frac{1 + \sqrt{1 + \langle a_i, y \rangle^2}}{2} \right] \rightarrow \max_{y}.$

Complexity:

- **IPM**(Newton): $O(Out(\mathcal{P}))$ Newton iterations.
- **FGM:** $\frac{1}{\epsilon_g} \|A\| \operatorname{Out}^{1/2}(\mathcal{P})$ gradient iterations.

Problem: Find $x : ||x||_{\infty} \leq 1$ and Ax = b.

Assumption:

For some $\hat{\epsilon} > 0$ there exist $\hat{x} : \|\hat{x}\|_{\infty} \leq 1 - \hat{\epsilon}$ and $A\hat{x} = b$.

New problem:
$$f^* = \min_{Ax=b} \left[F(x) \stackrel{\text{def}}{=} -\sum_{i=1}^n \ln\left(1 - (x^{(i)})^2\right) \right].$$

Dual problem: $\phi(y) = \min_{x} [\langle y, Ax - b \rangle + F(x)]$ = $-\langle b, y \rangle - \sum_{i=1}^{n} \left[\sqrt{1 + \langle a_i, y \rangle^2} - 1 - \ln \frac{1 + \sqrt{1 + \langle a_i, y \rangle^2}}{2} \right] \rightarrow \max_{y}.$

Complexity:

- **IPM**(Newton): $O(Out(\mathcal{P}))$ Newton iterations.
- **FGM**: $\frac{1}{\epsilon_q} \|A\| \operatorname{Out}^{1/2}(\mathcal{P})$ gradient iterations.

NB: $\operatorname{Out}(\mathcal{P}) \leq n \ln \frac{1}{\hat{\epsilon}}.$

Example 2. Entropy projection

Example 2. Entropy projection

Problem:
$$\min_{x \in \Delta_n} \bigg\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \bigg\}.$$

æ

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right]$$

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right] = -\ln \sum_{i=1}^n e^{\langle a_i, y \rangle}$$

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right] = -\ln \sum_{i=1}^n e^{\langle a_i, y \rangle} \to \max_{y \in R^m}$$

э

m

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right] = -\ln \sum_{i=1}^n e^{\langle a_i, y \rangle} \to \max_{y \in R^m}.$$

Optimal solution y^* can be very big (or do not exist).

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right] = -\ln \sum_{i=1}^n e^{\langle a_i, y \rangle} \to \max_{y \in R^m}$$

Optimal solution y^* can be very big (or do not exist).

Complexity of dual FGM:

A B M A B M

m

Problem:
$$\min_{x \in \Delta_n} \left\{ \eta(x) \stackrel{\text{def}}{=} \sum_{i=1}^n x^{(i)} \ln x^{(i)} : Ax = 0 \right\}.$$

NB: $\operatorname{Out}(\mathcal{P}) = \ln n.$

$$\phi(y) = \min_{x \in \Delta_n} \left[-\langle y, Ax \rangle + \eta(x) \right] = -\ln \sum_{i=1}^n e^{\langle a_i, y \rangle} \to \max_{y \in R^m}$$

Optimal solution y^* can be very big (or do not exist).

Complexity of dual FGM:

$$O\left(\frac{\ln^{1/2} n}{\epsilon_g} \max_{1 \le i \le n} ||a_i||_2\right)$$
 gradient iterations.

э.

m

Conclusion

< 注)→ < 注)→

æ –

• Our complexity bounds depend on ϵ_g in an optimal way.

э

Our complexity bounds depend on *ε_g* in an optimal way.
They almost do not depend on *ε_f*.

< ⊒ >

- Our complexity bounds depend on ϵ_g in an optimal way.
- They almost do not depend on ϵ_f .
- \blacksquare This is natural since we "eliminate" f by dualization.

→ Ξ →

- Our complexity bounds depend on ϵ_g in an optimal way.
- They almost do not depend on ϵ_f .
- \blacksquare This is natural since we "eliminate" f by dualization.

THANK YOU FOR YOUR ATTENTION!

→ ∃ →