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Problem formulation

Problem:

(P) : f∗
def
= min

x∈Q
{f(x) : Ax = b},

Q ⊂ X is a simple closed convex set,

function f(·) is strongly convex on Q:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2σ(f)‖y − x‖2, x, y ∈ Q.

A : X → Y ∗ is a linear operator, and b ∈ Y ∗.

Approximate solution: find x̄ ∈ Q such that

f(x̄)− f∗ ≤ εf , ‖Ax̄− b‖ ≤ εg.
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Complexity of problem (P): Black Box model

Assume for a moment that all norms are Euclidean.

If A ≡ ∅, ‖∇f(x)‖∗ ≤ L, and x ∈ Q, then we need

O
(

L2

εf σ(f)

)
iterations.

If f ≡ const, then we need O
(

1
εg
‖A‖ diamQ

)
iterations.

(Minimize the squared residual by FGM).

Define nonsmooth functional constraint
g(x) = ‖Ax− b‖ ≤ 0.

Standard subgradient method ensures

O

([
L
εf

+ ‖A‖
εg

]2
diam2Q

)
iterations.
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Dual approach

Define the Lagrangian L(x, y) = f(x) + 〈b−Ax, y〉. The dual
problem is as follows:

φ(y)
def
= min

x∈Q
L(x, y), φ∗

def
= sup

y∈Y
φ(y).

NB: This is useful only if φ(y) can be easily computed.

Since f is strongly convex, φ(y) is well defined for any y ∈ Y :
φ(y) = L(x(y), y), ∇φ(y) = b−Ax(y), y ∈ Y ,

where the point x(y) ∈ Q is uniquely defined. Its gradient is
Lipschitz continuous with L(φ) = 1

σ(f)‖A‖
2.

But: the standard complexity bounds of GMs depend on y∗:

Choosing y0 = 0, we have φ(y∗)− φ(yk) ≤ 4L(φ)‖y∗‖2
(k+1)2

.

NB: ‖y∗‖ can be big!
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Example

Let E = R2, and ‖x‖ ≡ ‖x‖2. Consider the problem

min
x

{
f(x) = 1

2‖x− e2‖2 : x(1) = 1, ‖x‖ ≤ 1
}

.

Defining the Lagrangian
L(x, y) = 1

2‖x− e2‖2 + y(1−x(1)) = 1
2‖x− e2− ye1‖2 + y− 1

2y
2,

we get x(y) = x̂(y)/‖x̂(y)‖, where x̂(y) = e2 + ye1.

Thus, φ(y) = 1
2(‖x̂(y)‖ − 1)2 + y − 1

2y
2 = 1− 1

y+
√

1+y2
.

No duality gap and φ(y)→ f∗ = 1 as y →∞.

x(y)→ x∗ = e1 as y →∞.

Optimal solution does not exist. Rate of convergence of
the standard dual GMs = ?
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Bounding the dual solution

Assumption 1: ∃x̄ and a radius ρ > 0 such that

Ax̄ = b and B(x̄, ρ) ⊆ Q.

Lemma. ‖AT y∗‖ ≤ (1 + 1
ρD)‖∇f(x∗)‖∗ , where D = diamQ.

Proof: since 〈∇f(x∗)−AT y∗, x− x∗〉 ≥ 0, for all x ∈ Q we
have

0 ≤ 〈∇f(x∗)−AT y∗, x̄− x∗〉+ 〈∇f(x∗)−AT y∗, x− x̄〉
= 〈∇f(x∗), x̄− x∗〉+ 〈∇f(x∗)−AT y∗, x− x̄〉.

Restricting ourselves to x ∈ B(x̄, ρ), we obtain

ρ‖∇f(x∗)−AT y∗‖∗ ≤ 〈∇f(x∗), x̄− x∗〉 ≤ ‖∇f(x∗)‖∗ ·D.

Hence, ‖∇f(x∗)‖∗ ·D ≥ ρ‖AT y∗‖∗ − ρ‖∇f(x∗)‖∗.
NB: We need ‖∇f(x)‖∗ ≤ const. (This may not happen.)
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Problems with bounded variation

Assume that problem (P) is solvable. Define its outer variation

Out(P) = min
x∈Q
{f(x) : Ax = b} − min

x∈Q
f(x).

Since f is strongly convex, this value is finite.

On the other hand, φ(0) = min
x∈Q

f(x)
def
= f(x∗), and

φ(y) ≤ L(x∗, y) = f∗, y ∈ Y, (1)

Thus, function φ has a bounded central variation on Y :

φ∗ − φ(0) = Out(P) < +∞. (2)

We study numerical schemes for maximizing dual functions
satisfying assumption (2).
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Termination criterion

For given εf , εg > 0, we are going to generate ȳ ∈ Y :

a) ‖∇φ(ȳ)‖∗ ≤ εg,

b) 〈∇φ(ȳ), ȳ〉 ≥ −εf .
(3)

Lemma. Let point ȳ ∈ Y satisfy conditions (3). Then

x(ȳ) ∈ Q, ‖Ax(ȳ)− b‖ ≤ εg, f(x(ȳ)) ≤ f∗ + εf .

Proof. Indeed, the point x(ȳ) belongs to Q by definition, and
∇φ(ȳ) = b−Ax(ȳ). Moreover,

f(x(ȳ)) + 〈b−Ax(ȳ), ȳ〉 ≤ f(x∗) + 〈b−Ax∗, ȳ〉 = f∗.

Hence, f(x(ȳ)) ≤ f∗ − 〈∇φ(ȳ), ȳ〉
(3)b
≤ f∗ + εf .
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Proof. Indeed, the point x(ȳ) belongs to Q by definition, and
∇φ(ȳ) = b−Ax(ȳ). Moreover,
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b) 〈∇φ(ȳ), ȳ〉 ≥ −εf .
(3)
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(3)b
≤ f∗ + εf .

Yu. Nesterov Functions with bounded variation 9/19



Termination criterion

For given εf , εg > 0, we are going to generate ȳ ∈ Y :
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Range of accuracy for the norm of the gradient

Conditions (3) with any εf ≥ 0 and εg ≥ ‖Ax∗ − b‖ are satisfied
by ȳ = 0.

Therefore, we always assume that

ε2g ≤ ‖Ax∗ − b‖2 = ‖A(x∗ − x∗)‖2 ≤ ‖A‖2 ‖x∗ − x∗‖2

≤ 2
σ(f)‖A‖

2(f(x∗)− f(x∗)) = 2L(φ) Out(P).
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Modified Gradient Method

Since φ has Lipschitz continuous gradients, we can maximize it
by a version of GM.
Choose starting point y0 = 0. Note that the norms below are
arbitrary.

Modified Gradient Method

1. Choose y′k = arg max
y

[
〈∇φ(yk), y − yk〉 − 1

2L(φ)‖y − yk‖2
]
.

2. Define yk+1 = tky
′
k, where tk ∈ (0, 1] is such that

φ(yk+1) ≥ φ(y′k), 〈∇φ(yk+1), yk+1〉 ≥ −εf .

Conditions of Item 2 can be satisfied by solving
1D-maximization problem max

t∈[0,1]
φ(ty′k).
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Convergence of GM

Theorem. GM is well defined. For any k ≥ 0 we have

φ(yk+1)− φ(yk) ≥ 1
2L(φ)‖∇φ(yk)‖2∗. (4)

Consequently, φ(yk) ≥ φ(0) for all k ≥ 0, and

N∑
k=0

‖∇φ(yk)‖2∗ ≤ 2L(φ) Out(P). (5)

Proof. Since φ has Lipschitz-continuous gradient, we have

φ(y) ≥ φ(yk) + 〈∇φ(yk), y − yk〉 − 1
2L(φ)‖y − yk‖2, y ∈ Y.

Substituting in this inequality y = y′k, we get
1

2L(φ)‖∇φ(yk)‖2∗ ≤ φ(y′k)− φ(yk) ≤ φ(yk+1)− φ(yk).

Consider θ(t) = φ(ty′k). Note that θ′(t) = 〈∇φ(ty′k), y
′
k〉. If

θ′(1) ≥ −εf , then tk = 1. Assume θ′(1) < −εf . Note that
θ′(0) ≥ θ(1)− θ(0) = φ(y′k)− φ(0) ≥ φ(yk)− φ(0) ≥ 0.

Thus, conditions of Item 2 can be satisfied by bisection.
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Complexity of GM

Denote k# = arg min
i
{‖∇φ(yi)‖∗ : 0 ≤ i ≤ k}.

Corollary: ‖∇φ(yk#)‖∗ ≤
[

2
k+1 L(φ) Out(P)

]1/2
, k ≥ 0.

Hence, for satisfying conditions (3), we need at most

Nεg
def
= 2

ε2g
L(φ) Out(P) iterations. (6)

Complexity of 1D-max. of φ(ty′k) depends on the size of y′k.

Lemma. ‖yk+1‖ ≤ ‖y′k‖ ≤
[
k+1

2L(φ)Out(P)
]1/2

.

Proof. Since tk ≤ 1,
‖yk+1‖ ≤ ‖y′k‖ ≤ ‖yk‖+ 1

2L(φ)‖∇φ(yk)‖∗.

Hence, ‖yk+1‖ ≤ 1
2L(φ)

k∑
i=0
‖∇φ(yk)‖∗. It remains to use (5).

Substituting in this bound the iteration bound (6), we obtain

‖yk+1‖ ≤ 1
εg

Out(P), 0 ≤ k ≤ Nεg .
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Fast Gradient Method

Let us choose B � 0. Define ‖y‖ = 〈By, y〉1/2.
For a fixed δ > 0, denote φδ(y) = φ(y)− δ

2‖y‖
2.

Problem: φ∗δ
def
= max

y∈Y
φδ(y).

Denote by y∗δ its unique optimal solution. Note that

φ∗δ = φ(y∗δ )−
δ
2‖y
∗
δ‖2 ≤ φ∗ −

δ
2‖y
∗
δ‖2.

Therefore, δ
2‖y
∗
δ‖2 ≤ φ∗δ − φδ(0)

(2)

≤ Out(P)− δ
2‖y
∗
δ‖2.

NB: L(φδ) = L(φ) + δ, and σ(φδ) = δ.

Let us apply the simplest FGM with starting point y0 = u0 = 0:

yk+1 = uk + 1
L(φ)+δB

−1∇φδ(uk),

uk+1 = yk+1 + κ(yk+1 − yk),

where κ = [L(φ)+δ]1/2−δ1/2
[L(φ)+δ]1/2+δ1/2

.
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Convergence of FGM

φ∗δ − φδ(yk) ≤ 2 exp
(
−k
√

δ
L(φ)+δ

)
·Out(P).

Thus, for any ξ > 0 and k large enough, we can ensure

ξ ≥ φ∗δ − φδ(yk) ≥
1

2(L(φ)+δ)‖∇φδ(yk)‖
2
∗

= 1
2(L(φ)+δ)‖∇φ(yk)− δByk‖2∗ ≥ − 2δ

L(φ)+δ 〈∇φ(yk), yk〉.

Thus, in order to guarantee (3)b, we need ξ ≤ 2 εf δ
L(φ)+δ .

On the other hand, for (3)a we need

‖∇φ(yk)‖∗ ≤ [2ξ(L(φ) + δ)]1/2 + δ‖yk‖
≤ [2ξ(L(φ) + δ)]1/2 + δ

[
1
δOut(P)

]1/2 ≤ εg.

Hence, ξ must satisfy inequality

ξ ≤ min{ 2 εf δ
L(φ)+δ ,

(εg−[δOut(P)]1/2)2

2(L(φ)+δ) }.
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Complexity of FGM

Choice of ξ: for
√
δ =

εg

Out1/2+2ε
1/2
f

≈ εg
Out1/2(P)

, we get

ξ ≈ 2 εf ε
2
g

L(φ)Out(P) .

Hence, the total number of iterations for getting
(εf , εg)-solution is of the order

O
(
L1/2(φ)
εg

Out1/2(P) ln L(φ)Out(P)
εf ε2g

)
.

This is approximately
√
· of that for GM.

NB: dependence on εf is very weak.

Complexity of objective function enters by L(φ) = 1
σ(f)‖A‖

2,

and Out(P).
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Hence, the total number of iterations for getting
(εf , εg)-solution is of the order

O
(
L1/2(φ)
εg

Out1/2(P) ln L(φ)Out(P)
εf ε2g

)
.

This is approximately
√
· of that for GM.

NB: dependence on εf is very weak.
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Example 1. Solving system of linear inequalities

Problem: Find x : ‖x‖∞ ≤ 1 and Ax = b.

Assumption:
For some ε̂ > 0 there exist x̂ : ‖x̂‖∞ ≤ 1− ε̂ and Ax̂ = b.

New problem: f∗ = min
Ax=b

[
F (x)

def
= −

n∑
i=1

ln
(
1− (x(i))2

)]
.

Dual problem: φ(y) = min
x

[〈y,Ax− b〉+ F (x)]

= −〈b, y〉 −
n∑
i=1

[√
1 + 〈ai, y〉2 − 1− ln

1+
√

1+〈ai,y〉2
2

]
→ max

y
.

Complexity:

IPM(Newton): O(Out(P)) Newton iterations.

FGM: 1
εg
‖A‖Out1/2(P) gradient iterations.

NB: Out(P) ≤ n ln 1
ε̂ .
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Example 2. Entropy projection

Problem: min
x∈∆n

{
η(x)

def
=

n∑
i=1

x(i) lnx(i) : Ax = 0

}
.

NB: Out(P) = lnn.

Dual problem:

φ(y) = min
x∈∆n

[−〈y,Ax〉+ η(x)] = − ln
n∑
i=1

e〈ai,y〉 → max
y∈Rm

.

Optimal solution y∗ can be very big (or do not exist).

Complexity of dual FGM:

O

(
ln1/2 n
εg

max
1≤i≤n

‖ai‖2
)

gradient iterations.
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Conclusion

Our complexity bounds depend on εg in an optimal way.

They almost do not depend on εf .

This is natural since we “eliminate” f by dualization.

Thank you for your attention!
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