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Low-dimensional approximations

Main idea of modern data analysis — low-dimensional approximations.
Lasso regression, sparse parameters, compressed sensing, L1 techniques
etc.
One of the problems: given a cluster of points xi ∈ Rn, i = 1, . . . , N ,
approximate them with low-dimensional affine subspace. In statistics it is
done by use of Principal Component Analysis (PCA).
PCA: calculate

x̄ =
1
N

N∑
i=1

xi, H =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T ,

find eigenvectors and eigenvalues of H:
Hei = λiei, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn, then en, en−1, . . . , em are principal
components (i.e. n−m + 1-dimensional approximation of the cluster).
There are 2 validations of this choice, we consider both of them and their
robust counterparts.
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PCA — Pearson 1901
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Best fit by a hyperplane

Pearson — no statistical validation, just best fit!
Problem: given xi ∈ Rn, i = 1, . . . , N , find a hyperplane (c, x) = 0 which
provides the best (in mean-square sense) approximation to them. We
normalize c : ||c|| = 1. Then the distance ri from xi to the hyperplane
equals |(c, xi)| and the best hyperplane solves

min
||c||=1

∑
i

(c, xi)2

If we denote H =
1
N

∑
xix

T
i ,Hei = λiei, ||ei|| = 1, 0 ≤ λ1 ≤ · · · ≤ λn

then the obvious solution is
c∗ = e1

that is the eigenvector corresponding to the least eigenvalue of H. It is
the solution obtained by Pearson.
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Non-centered sample

We assumed above that the hyperplane contains the origin. More typical
situation is an affine hyperplane (c, x) = β. Then optimization problem
becomes

min
β,||c||=1

∑
i

((c, xi)− β)2

Its solution is
c∗ = e1, β

∗ = (c∗, x̄)

where

x̄ =
1
N

∑
i

xi,H =
1
N

∑
(xi−x̄)(xi−x̄)T ,Hei = λiei, 0 ≤ λ1 ≤ · · · ≤ λn

This solution is also due to Pearson.
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(n−m)D subspace

The solution above is the best fit of points by n− 1 dimensional affine
subspace. Now let’s extend it to arbitrary dimension. We are looking for a
linear manifold defined by m linear equalities Cx = b where rows
ci, i = 1, . . . m of matrix C are orthogonal and scaled (ci, cj) = δij , that is
CCT = Im. Then the distance from xi to this manifold equals ||Cxi − b||
and we arrive to optimization problem

min
b,CCT =I

∑
i

||Cxi − b||2

LemmaThe solution is given by

x̄ =
1
N

∑
i

xi,H =
1
N

∑
(xi − x̄)(xi − x̄)T ,

Hei = λiei, ||ei|| = 1, 0 ≤ λ1 ≤ · · · ≤ λn,

C∗ =
(

e1 e2 . . . em

)T
, b∗ = C∗x̄.
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Comments

The proof can be obtained by Lagrange multipliers method. Similar results
are known (Brockett 1991, Chu, Driessel 1994). Pearson provided the
solution for m = 1, n− 1 only (hyperplane and straight line).
It is interesting that we are looking for matrix C subject to condition
rankC = m. Such constraints are nonconvex, and there are special
relaxation approaches to approximate the optimization problem with a
convex one. Here we avoid the relaxation.
Until now we had no statistical model of data. We just constructed the
least square approximation.
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Statistical Model

Principal Component Analysis has very natural statistical validation. It is
assumed that xi = zi + ξi where Czi = b while ξi are i.i.d. with common
distribution N(0, In). Then Cxi − b are i.i.d. with common distribution
N(0, Im). Maximum Likelihood Estimate (MLE) for b and C are given by
the above formulas. The first m Principal Components are the largest
half-axes of the ellipsoid (H(x− x̄), x− x̄) ≤ 1, this is standard result in
PCA.
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Robustness in statistics

Standard PCA is very sensitive to outliers. If among xi there are few
points which are outliers (i.e. they have distribution which differs from the
common one and their distances from x̄ are large enough), they can
strongly imply the solution.
This effect is well known in statistics; the word “robust” was introduced by
famous statistician Box (1952). David Bernoulli (1777) discussed the
problem of outliers, while Mendeleev (1895) proposed trimming procedure
to get robust estimates.
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Robust PCA

There are numerous attempts to robustify PCA , most of them are based
on sparsity models and l1 techniques. Typical example is E. J. Candes, X.
Li, Y. Ma, J. Wright, Robust Principal Component Analysis, Journal of
ACM, 2009, 58(1), 1-37.
Our approach relies on ideas of the monograph P.Huber, “Robust
statistics”, 1981 (second edition 1996 has > 10000 citations), it had great
influence on modern statistics. The “nearest relative” to our technique is:
R.Maronna, Robust M-estimators of multivariate location and scatter,
Annals of Stat., 1976. However numerical algorithms are different.
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Robust estimation of location parameter

Huber 1964. Given sample xi ∈ R1, i = 1, . . . , N , find their center. If
xi ∼ N(a, 1) i.i.d., then the best estimate is arithmetic mean

â = x̄ =
1
N

∑
xi. However it is not robust w.r.t. outliers. Median

â = arg min
x

∑
|xi − x| is much more robust. Huber’s function

h(t) =
{

t2/2 if |t| ≤ 1
|t| − 1/2 if |t| > 1

}
provides robust estimate x∗ = arg min

x

∑
h(xi − x) which is in between

median and arithmetic mean. It is optimal for contaminated Gaussian
families of distributions in some minimax asymptotic sense.
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Statistical Model 1 for Robust PCA

Suppose that

xi = zi + ξi, Czi = b, ξi ∼ N(0, I)i.i.d.

CCT = I, rank C = m. Then MLE for C, b is given by optimization
problem

min
b,CCT =I

∑
i

||Cxi − b||2

considered above. Now assume that ξi’s are contaminated Gaussian. Then
optimization problem becomes

min
b,CCT =I

∑
i

h(||Cxi − b||).

This is our first robust PCA estimate. Other statistical models will be
addressed later.
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Discussion

1 The optimization problem is matrix one and it is nonconvex. However
its solution can be found explicitly if objective function is quadratic.

2 Our constraint can be written in the form rank C = m. Such
constraints are hard in optimization, and usually convex relaxation is
exploited to treat them. We’ll solve optimization problem avoiding
convex relaxation.

3 The only analog of such approach without convexification for different
problem is found in Teboulle, 2011. At each iteration he solves
non-convex problem

min(a, x) ||x||0 = m, ||x||2 = 1

(||x||0 is the number of nonzero entries of x). Its explicit solution is
x∗i = −γai, i = 1, . . . ,m, x∗i = 0, i > m, |a1| ≤ |a2| ≤ · · · ≤ |an|.
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How to solve the nonconvex problem?

The idea is to apply weighted least squares method, proposed for
Steiner-Weber problem by Weiszfeld, 1937 (see F.Plastira, Ann. Op. Res.
2009).

min
x

∑
||ai − x||, x ∈ Rn

Let xk be k-th iteration. Approximate ||x− ai|| with quadratic
approximation at tik = xk − ai : 1/2(||x− ai||2/|tik|+ |tik|) thus
minimization problem becomes

min
x

∑
wik||ai − x||2, wik = 1/||xk − ai||,

and its solution is

xk+1 =
∑

i wikai∑
i wik

Similar idea of upper quadratic approximation can be applied in our case.
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Optimization problem

min
b,CCT =I

∑
i

h(||Cxi − b||)

where b ∈ Rm, C ∈ Rm×n, xi ∈ Rn, i = 1, . . . , N and

h(t) =
{

t2/2 if |t| ≤ 1
|t| − 1/2 if |t| > 1

}
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Algorithm for Model 1

Begin

x̄0 =
1
N

∑
i

xi,H
0 =

1
N

∑
i

(xi − x̄0)(xi − x̄0)T ,

H0ei = λiei, ||ei|| = 1, 0 ≤ λ1 ≤ · · · ≤ λn,

C1 =
(

e1 e2 . . . em

)T
, b1 = C1x̄0.

k-th iteration tik = ||Ckxi − bk||, wik =
{

1 if |tik| ≤ 1
1/|tik| if |tik| > 1

}

x̄k =
∑

i wikxi∑
i wik

,Hk =
∑

i

wik(xi − x̄k)(xi − x̄k)T ,

Hkei = λiei, ||ei|| = 1, 0 ≤ λ1 ≤ · · · ≤ λn,

Ck+1 =
(

e1 e2 . . . em

)T
, bk+1 = Ck+1x̄k.
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Implementation details

1 Choice of threshold ∆ in Huber’s function

h(t) =
{

t2/2 if |t| ≤ ∆
∆|t| −∆2/2 if |t| > ∆

}
Larger is contamination smaller is ∆.

2 Detection of outliers. Points xi with small wik are outliers. Notice
that outliers in affine subspace are not detected.

3 Choice of m when it is not fixed in advance. Notice that the solution
depends on m in contrast with quadratic case.

4 Main question: convergence and rate of convergence of the algorithm.
Easy to prove: objective function is monotonically decreasing.
Unfortunately there exist examples where convergence to local
minima holds for some initial approximations. However in most cases
global convergence is met.
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Gaussian sample — Model 2

We start with another validation of PCA as Maximum Likelihood
technique for Gaussian distribution. Now we do not assume points lie in a
subspace, they are xi = a + C−1zi; zi ∼ N(0, I) are i.i.d., C is n× n
non-degenerate matrix, i = 1, . . . , N . Our goal is to estimate a,C. Points
xi have common density

p(x) =
det C

(2π)n/2
exp(−1/2||C(x− a)||2).

For Q = CCT the likelihood function is

φ(Q, a) = −
∑

log p(xi) = −N

2
log det V +

1
2

∑
i

||V 1/2(xi − a)||2.

Thus MLE for a is â = arg min
a

φ(Q, a) = x̄ =
1
N

∑
xi and likelihood

function becomes

J(Q) = −N

2
log det Q +

N

2
< H,Q >)
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Gaussian sample — Model 2 Contd

where H = (1/N)
∑

i

(xi − x̄)(xi − x̄)T and < ., . > stands for scalar

product of matrices in the space of symmetric matrices equipped with
Frobenius norm. Thus we get the MLE

Q̂ = arg min
Q>0

(− log det Q+ < H, Q >)

This convex optimization problem has the explicit solution Q̂ = H−1. We
conclude that MLE for xi ∼ N(a, V ), V = Q−1 is sample mean

x̄ =
1
N

∑
xi and sample covariance V̄ = (1/N)

∑
i

(xi − x̄)(xi − x̄)T

Now principal components of the sample xi are eigenvectors of V̄
corresponding to few smallest eigenvalues. Their number can be chosen
either a priory or with some heuristics.
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Robust PCA — Model 2

We address the same model as above xi = a + C−1zi, but now zi have
contaminated Gaussian distribution with zero mean and radial-depending
density. We assume that this density corresponds to “the worst”
contamination in scalar model, that is common density for xi is

p(x) = α det C exp(−h(||C(x− a)||))

where h(t) is Huber’s function and α is scaling parameter. Then the
likelihood function is

φ(V, a) = −
∑

log p(xi) = −N

2
log det V +

∑
i

1
2
h(||V 1/2(xi − a)||).

Finding MLE is a convex optimization problem in V, a; however in contrast
with Gaussian case its explicit solution is not available. To minimize this
function we exploit the same idea of upper quadratic approximation as
above. Thus we arrive to following algorithm.
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Algorithm for Model 2

Begin

x̄0 =
1
N

∑
i

xi, V
0 =

1
N

∑
i

(xi − x̄0)(xi − x̄0)T , C0 = (V 0)1/2

k-th iteration tik = ||Ck(xi − x̄k)||, wik =
{

1 if |tik| ≤ 1
1/|tik| if |tik| > 1

}

x̄k+1 =
∑

i wikxi∑
i wik

, V k+1 =
∑

i wik(xi − x̄k+1)(xi − x̄k+1)T∑
i wik

,

Ck+1 = (V k+1)1/2
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Comments

1 The optimization problem under consideration is a convex one. It is
possible to prove global convergence of the algorithm.

2 The rate of convergence is fast. Probably it is linear.

3 Choice of threshold ∆ in Huber’s function depends on contamination
level.
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Some examples. Mammals 1

Well known test. 55 mammals, 4 factors (weight, brain weight etc.), goal -
to visualize data. Results for 2D approximation via PCA and robust PCA.
ti — distance from xi to this 2D approximation.

Values ri are smaller for PCA than for RPCA, however RPCA indicates 2
outliers.
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Mammals 2

Same data. Results for 2D approximation via PCA and robust robust PCA.
Projections of xi onto 2D plane orthogonal to this 2D approximation.

Points for RPCA lie more compact than for PCA, however RPCA indicates
2 outliers.
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Other examples

Many other examples from databases
http://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/
have been tested.

B. Polyak (ICS, Moscow) Robust PCA Berlin, May 16, 2013 26 / 28



Open problems

1 Statistical validation. Asymptotic behavior of the Maximum
Likelihood Estimates, their asymptotic consistency and asymptotic
normality.

2 Numerical validation. Rigorous proof of convergence and rate of
convergence. Situation with local and global convergence for model 1.

3 Application for real-life data.

4 Application to classification problems etc.
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