Stochastic Equilibrium in Congested Transportation Networks

Yurii Nesterov, CORE/INMA(UCL) - Premolab/MIPT

October 17, 2013 (ORM 2013, Moscow)

Outline

- 1 Discrete choice models
- 2 Transportation networks
- 3 Characteristic functions of directed graphs
- 4 Special sets of routes
- 5 Stochastic route choice model
- 6 Stochastic equilibrium

Discrete choice models (Logit)

イロン イヨン イヨン イヨン

Discrete choice models (Logit)

1. We have k products with the costs $c^{(1)}, \ldots, c^{(k)}$.

(ロ) (同) (E) (E) (E)

2. A consumer estimates the actual value of the cost with an additive error:

$$ilde{c}^{(i)}=c^{(i)}+\epsilon_i, \quad i=1,\ldots,k.$$

- 4 同 6 4 日 6 4 日 6

2. A consumer estimates the actual value of the cost with an additive error:

$$ilde{c}^{(i)}=c^{(i)}+\epsilon_i,\quad i=1,\ldots,k.$$

His choice is then i^* : $\tilde{c}^{(i^*)} = \min_{1 \le i \le k} \tilde{c}^{(i)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

2. A consumer estimates the actual value of the cost with an additive error:

$$ilde{c}^{(i)}=c^{(i)}+\epsilon_i,\quad i=1,\ldots,k.$$

His choice is then i^* : $\tilde{c}^{(i^*)} = \min_{1 \le i \le k} \tilde{c}^{(i)}$.

3. If all ϵ_i are independent and have the same double-exponential distribution with deviation μ_i ,

・ 同 ト ・ ヨ ト ・ ヨ ト

2. A consumer estimates the actual value of the cost with an additive error:

$$ilde{c}^{(i)}=c^{(i)}+\epsilon_i,\quad i=1,\ldots,k.$$

His choice is then i^* : $\tilde{c}^{(i^*)} = \min_{1 \le i \le k} \tilde{c}^{(i)}$.

3. If all ϵ_i are independent and have the same double-exponential distribution with deviation μ , then

$$p^{(i)} = rac{e^{-c^{(i)}/\mu}}{\sum\limits_{j=1}^{k} e^{-c^{(j)}/\mu}}, \quad i = 1, \dots, k.$$

(Logit model.)

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right)$.

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in \mathbb{R}^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in \mathbb{R}^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right)$.
Then $\psi(c)$ is *convex* in c and $p = -\nabla\psi(c)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Denote
$$c - (c^{(1)}, ..., c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, ..., p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right)$.

Then $\psi(c)$ is *convex* in *c* and $p = -\nabla \psi(c)$.

We can go both ways:

(ロ) (同) (E) (E) (E)

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right).$

Then $\psi(c)$ is *convex* in *c* and $p = -\nabla \psi(c)$.

We can go both ways:

From a given *c* we can compute *p*: $p = -\nabla \psi(c)$.

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right).$

Then $\psi(c)$ is *convex* in *c* and $p = -\nabla \psi(c)$.

We can go both ways:

- From a given *c* we can compute *p*: $p = -\nabla \psi(c)$.
- From a given p we can compute c = c(p): $c(p) = \arg\min_{c} [\psi(c) + \langle p, c \rangle],$ where $\langle x, u \rangle = \sum_{i=1}^{k} p^{(i)} c^{(i)}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right).$

Then $\psi(c)$ is convex in c and $p = -\nabla \psi(c)$.

We can go both ways:

- From a given *c* we can compute *p*: $p = -\nabla \psi(c)$.
- From a given p we can compute c = c(p): $c(p) = \arg\min_{c} [\psi(c) + \langle p, c \rangle],$ where $\langle x, u \rangle = \sum_{i=1}^{k} p^{(i)} c^{(i)}.$

NB: 1. This minimization problem is *convex*.

・回 と く ヨ と く ヨ と

Denote
$$c - (c^{(1)}, \dots, c^{(k)})^T \in R^k$$
, $p = (p^{(1)}, \dots, p^{(k)})^T \in R^k$,
 $\psi(c) = \ln\left(\sum_{i=1}^k e^{-c^{(i)}}\right).$

Then $\psi(c)$ is convex in c and $p = -\nabla \psi(c)$.

We can go both ways:

- From a given *c* we can compute *p*: $p = -\nabla \psi(c)$.
- From a given p we can compute c = c(p): $c(p) = \arg\min_{c} [\psi(c) + \langle p, c \rangle],$ where $\langle x, u \rangle = \sum_{i=1}^{k} p^{(i)} c^{(i)}.$

NB: 1. This minimization problem is *convex*.

2.
$$\lim_{\mu \to 0} (-\mu \psi(c/\mu)) = \min_{1 \le i \le k} c^{(i)}$$

4/19

Composite products

æ

Composite products

We have *m* ingredients with the costs $t = (t^{(1)}, \ldots, t^{(m)})^T \in R^m$.

マボン イラン イラン 一日

The cost of the product i is the sum of the costs of the ingredients:

$$c^{(i)} = \sum_{j=1}^{m} a_i^{(j)} t^{(j)} = \langle a_i, t \rangle, \quad i = 1, \dots, k.$$

 $(a_i^{(j)})$ is the quantity of the ingredient j in the product i.)

向下 イヨト イヨト

The cost of the product *i* is the sum of the costs of the ingredients:

$$c^{(i)} = \sum_{j=1}^m a_i^{(j)} t^{(j)} = \langle a_i, t \rangle, \quad i = 1, \dots, k.$$

 $(a_i^{(j)})$ is the quantity of the ingredient j in the product i.)

Denote
$$\psi(t) = \ln\left(\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}\right).$$

The cost of the product *i* is the sum of the costs of the ingredients:

$$c^{(i)} = \sum_{j=1}^m a_i^{(j)} t^{(j)} = \langle a_i, t \rangle, \quad i = 1, \dots, k.$$

 $(a_i^{(j)})$ is the quantity of the ingredient j in the product i.)

Denote
$$\psi(t) = \ln\left(\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}\right).$$

Then the vector $f = -\nabla \psi(t) = \frac{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle} a_i}{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}} = \sum_{i=1}^{k} p_i a_i$

向下 イヨト イヨト

The cost of the product *i* is the sum of the costs of the ingredients:

$$c^{(i)} = \sum_{j=1}^m a_i^{(j)} t^{(j)} = \langle a_i, t \rangle, \quad i = 1, \dots, k.$$

 $(a_i^{(j)})$ is the quantity of the ingredient j in the product i.)

Denote
$$\psi(t) = \ln\left(\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}\right).$$

Then the vector $f = -\nabla \psi(t) = \frac{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle} a_i}{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}} = \sum_{i=1}^{k} p_i a_i$

gives the <u>expected consumption</u> of the ingredients, which corresponds to the prices t.

・ 同 ト ・ ヨ ト ・ ヨ ト

The cost of the product *i* is the sum of the costs of the ingredients:

$$c^{(i)} = \sum_{j=1}^m a_i^{(j)} t^{(j)} = \langle a_i, t \rangle, \quad i = 1, \dots, k.$$

 $(a_i^{(j)})$ is the quantity of the ingredient j in the product i.)

Denote
$$\psi(t) = \ln\left(\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}\right).$$

Then the vector $f = -\nabla \psi(t) = \frac{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle} a_i}{\sum_{i=1}^{k} e^{-\langle a_i, t \rangle}} = \sum_{i=1}^{k} p_i a_i$

gives the <u>expected consumption</u> of the ingredients, which corresponds to the prices t.

Since $\psi(t)$ is convex, we can go in both directions: $t \Rightarrow f(t), \quad f \Rightarrow t(f).$

AT I DOGO

< □ > < □ > < □ >

Э

A ■

Э

Strategies (routes from 1 to 4):

t٦ t5 t1 Strategies (routes from 1 to 4): $a_1 = (0, 1, 0, 1, 0, 0)^T, c_1(t) = t_2 + t_4,$ $a_2 = (1, 0, 1, 0, 0, 0)^T, c_2(t) = t_1 + t_3,$ $a_3 = (1, 0, 0, 1, 1, 0)^T, c_3(t) = t_1 + t_4 + t_5.$

Potential function: $\psi(t) = \ln (e^{-c_1(t)} + e^{-c_2(t)} + e^{-c_3(t)}).$

tъ t1 Strategies (routes from 1 to 4): $a_1 = (0, 1, 0, 1, 0, 0)^T, c_1(t) = t_2 + t_4,$ $a_2 = (1, 0, 1, 0, 0, 0)^T, c_2(t) = t_1 + t_3,$ $a_3 = (1, 0, 0, 1, 1, 0)^T, c_3(t) = t_1 + t_4 + t_5.$ Potential function: $\psi(t) = \ln (e^{-c_1(t)} + e^{-c_2(t)} + e^{-c_3(t)}).$ Then the gradient $f = -\nabla \psi(t) = p_1 a_1 + p_2 a_2 + p_3 a_3$

t٦ tъ t1 Strategies (routes from 1 to 4): $a_1 = (0, 1, 0, 1, 0, 0)^T, c_1(t) = t_2 + t_4,$ $a_2 = (1, 0, 1, 0, 0, 0)^T, c_2(t) = t_1 + t_3,$ $a_3 = (1, 0, 0, 1, 1, 0)^T, c_3(t) = t_1 + t_4 + t_5.$ Potential function: $\psi(t) = \ln (e^{-c_1(t)} + e^{-c_2(t)} + e^{-c_3(t)}).$ Then the gradient $f = -\nabla \psi(t) = p_1 a_1 + p_2 a_2 + p_3 a_3$ is the *expected flow* on the arcs (with respect to given time t).

Sets of routes in general networks

< E

æ

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m) : 1 \le i_k, j_k \le n, k = 1, \dots, m.$

マロト イヨト イヨト ニヨ

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \le i_k, j_k \le n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

向下 イヨト イヨト

Consider the network \mathcal{N} with *n* nodes and *m* arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m) : 1 \le i_k, j_k \le n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the *length* of the route.

向下 イヨト イヨト
Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \le i_k, j_k \le n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the <u>length</u> of the route. Denote by $a(r) \in R^m$ the vector:

$$a(r)^{(k)} = \left\{ egin{array}{cc} 1, & ext{if } (i_k, j_k) \in r, \ 0, & ext{otherwise.} \end{array}
ight. k = 1, \dots m.$$

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \leq i_k, j_k \leq n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the <u>length</u> of the route. Denote by $a(r) \in R^m$ the vector:

$$\mathsf{a}(r)^{(k)} = \left\{ egin{array}{cc} 1, & ext{if } (i_k, j_k) \in r, \\ 0, & ext{otherwise.} \end{array}
ight. k = 1, \dots m.$$

Then for any $t \in R^m$ we can define the cost $c_r(t) = \langle a(r), t \rangle$.

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \leq i_k, j_k \leq n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the <u>length</u> of the route. Denote by $a(r) \in R^m$ the vector:

$$\mathsf{a}(r)^{(k)} = \left\{ egin{array}{cc} 1, & ext{if } (i_k, j_k) \in r, \ 0, & ext{otherwise.} \end{array}
ight. k = 1, \dots m.$$

Then for any $t \in \mathbb{R}^m$ we can define the cost $c_r(t) = \langle a(r), t \rangle$. **Def.** Let \mathcal{R} be some set of routes in \mathcal{N} .

向下 イヨト イヨト

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \le i_k, j_k \le n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the <u>length</u> of the route. Denote by $a(r) \in R^m$ the vector:

$$\mathsf{a}(r)^{(k)} = \left\{ egin{array}{cc} 1, & ext{if } (i_k, j_k) \in r, \ 0, & ext{otherwise.} \end{array}
ight. k = 1, \dots m.$$

 $r \in \mathcal{R}$

Then for any $t \in R^m$ we can define the cost $c_r(t) = \langle a(r), t \rangle$.

Def. Let \mathcal{R} be some set of routes in \mathcal{N} . We call $g_{\mathcal{R}}(t) = \sum e^{-c_r(t)}$

the <u>characteristic function</u> of \mathcal{R} .

- 4 同 6 4 日 6 4 日 6

Consider the network \mathcal{N} with n nodes and m arcs: $\mathcal{A} = \{(i_1, j_1), \dots, (i_m, j_m): 1 \leq i_k, j_k \leq n, k = 1, \dots, m.$

An ordered set of pairs from \mathcal{A} : $r = \{(i_0, i_1), (i_1, i_2), \dots, (i_{p-1}, i_p)\}$ is called the *route* in \mathcal{N} , connecting i_0 and i_p .

The value l(r) = p is called the <u>length</u> of the route. Denote by $a(r) \in R^m$ the vector:

$$\mathsf{a}(r)^{(k)} = \left\{ egin{array}{cc} 1, & ext{if } (i_k, j_k) \in r, \\ 0, & ext{otherwise.} \end{array}
ight. k = 1, \dots m.$$

Then for any $t \in R^m$ we can define the cost $c_r(t) = \langle a(r), t \rangle$.

Def. Let \mathcal{R} be some set of routes in \mathcal{N} . We call

$$g_{\mathcal{R}}(t) = \sum_{r \in \mathcal{R}} e^{-c_r(t)}$$

the <u>characteristic function</u> of \mathcal{R} . For $\mathcal{R} = \emptyset$ define $g_{\emptyset}(t) \equiv 0$.

Properties of potential functions

< E

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem.

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem. 1. $\psi_{\mathcal{R}}(t)$ is a convex function.

伺下 イヨト イヨト

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem. 1. $\psi_{\mathcal{R}}(t)$ is a convex function.

2. The vector $-\nabla \psi_{\mathcal{R}}(t)$ is the expected flow in the network.

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem. 1. $\psi_{\mathcal{R}}(t)$ is a convex function.

- 2. The vector $-\nabla \psi_{\mathcal{R}}(t)$ is the expected flow in the network.
- 3. For any $t, \bar{t} \in R^m$ we have $\lim_{\mu \to \infty} \left(-\frac{1}{\mu} \psi_{\mathcal{R}}(\bar{t} + \mu t) \right) = SP_{\mathcal{R}}(t).$

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem. 1. $\psi_{\mathcal{R}}(t)$ is a convex function.

- 2. The vector $-\nabla \psi_{\mathcal{R}}(t)$ is the expected flow in the network.
- 3. For any $t, \bar{t} \in R^m$ we have $\lim_{\mu \to \infty} \left(-\frac{1}{\mu} \psi_{\mathcal{R}}(\bar{t} + \mu t) \right) = SP_{\mathcal{R}}(t).$

Main property: for $\mathcal{R} = \mathcal{R}_1 \bigcup \mathcal{R}_2$ with $\mathcal{R}_1 \bigcap \mathcal{R}_2 = \emptyset$,

マボン イラン イラン 一日

Let \mathcal{R} be non-empty and finite. Denote $SP_{\mathcal{R}}(t) = \min_{r} \{c_r(t) : r \in \mathcal{R}\}.$ (It is concave.)

Theorem. 1. $\psi_{\mathcal{R}}(t)$ is a convex function.

- 2. The vector $-\nabla \psi_{\mathcal{R}}(t)$ is the expected flow in the network.
- 3. For any $t, \bar{t} \in R^m$ we have $\lim_{\mu \to \infty} \left(-\frac{1}{\mu} \psi_{\mathcal{R}}(\bar{t} + \mu t) \right) = SP_{\mathcal{R}}(t).$

Main property: for $\mathcal{R} = \mathcal{R}_1 \bigcup \mathcal{R}_2$ with $\mathcal{R}_1 \bigcap \mathcal{R}_2 = \emptyset$, we have

$$\psi_{\mathcal{R}}(t) = \ln\left(e^{\psi_{\mathcal{R}_1}(t)} + e^{\psi_{\mathcal{R}_2}(t)}\right).$$

(4月) (4日) (4日) 日

Main difficulties

・ロン ・四と ・ヨン ・ヨン

三王

1. In general networks, the number of acyclic routes is exponentially big.

・日・ ・ヨ・ ・ヨ・

э

- **1.** In general networks, the number of acyclic routes is exponentially big.
- 2. The number of routes with cycles is infinite.

- **1.** In general networks, the number of acyclic routes is exponentially big.
- 2. The number of routes with cycles is infinite.

Can we compute characteristic functions of some reasonably big sets of routes?

向下 イヨト イヨト

Special sets of routes

- - 4 回 ト - 4 回 ト

æ

Special sets of routes

Let us fix two nodes i and j.

| 4 回 2 4 U = 2 4 U =

$$\mathcal{R}^{p}_{i,j}$$
 the set of all routes of length p connecting j and i .

$$\begin{split} \mathcal{R}^{p}_{i,j} & \text{the set of all routes of length } p \\ & \text{connecting } j \text{ and } i. \\ \widehat{\mathcal{R}}^{L}_{i,j} & = \bigcup_{p=1}^{L} \ \mathcal{R}^{p}_{i,j}, \end{split}$$

$$\begin{aligned} \mathcal{R}_{i,j}^{p} & \text{the set of all routes of length } p \\ & \text{connecting } j \text{ and } i. \end{aligned} \\ \widehat{\mathcal{R}}_{i,j}^{L} &= \bigcup_{p=1}^{L} \mathcal{R}_{i,j}^{p}, \\ \widetilde{\mathcal{R}}_{i,j} &= \bigcup_{p=1}^{\infty} \mathcal{R}_{i,j}^{p}. \end{aligned}$$

$$\begin{aligned} \mathcal{R}_{i,j}^{p} & \text{the set of all routes of length } p \\ & \text{connecting } j \text{ and } i. \end{aligned} \\ \widehat{\mathcal{R}}_{i,j}^{L} &= \bigcup_{\substack{p=1\\p=1}}^{L} \mathcal{R}_{i,j}^{p}, \\ \widetilde{\mathcal{R}}_{i,j} &= \bigcup_{\substack{p=1\\p=1}}^{\infty} \mathcal{R}_{i,j}^{p}. \end{aligned}$$

Denote by E(t) the following $n \times n$ -matrix:

$$\begin{aligned} \mathcal{R}_{i,j}^{p} & \text{the set of all routes of length } p \\ & \text{connecting } j \text{ and } i. \end{aligned} \\ \widehat{\mathcal{R}}_{i,j}^{L} &= \bigcup_{\substack{p=1\\p=1}}^{L} \mathcal{R}_{i,j}^{p}, \\ \widetilde{\mathcal{R}}_{i,j} &= \bigcup_{\substack{p=1\\p=1}}^{\infty} \mathcal{R}_{i,j}^{p}. \end{aligned}$$

Denote by E(t) the following $n \times n$ -matrix:

$$E(t)^{(i,j)} = \begin{cases} e^{-t^{(\alpha)}}, & \text{if } \alpha \equiv (j,i) \in \mathcal{A}, \end{cases}$$

э

$$\begin{aligned} \mathcal{R}_{i,j}^{p} & \text{the set of all routes of length } p \\ & \text{connecting } j \text{ and } i. \end{aligned} \\ \widehat{\mathcal{R}}_{i,j}^{L} &= \bigcup_{\substack{p=1\\p=1}}^{L} \mathcal{R}_{i,j}^{p}, \\ \widetilde{\mathcal{R}}_{i,j} &= \bigcup_{\substack{p=1\\p=1}}^{\infty} \mathcal{R}_{i,j}^{p}. \end{aligned}$$

Denote by E(t) the following $n \times n$ -matrix:

$$E(t)^{(i,j)} = \begin{cases} e^{-t^{(\alpha)}}, & \text{if } \alpha \equiv (j,i) \in \mathcal{A}, \\ 0, & \text{otherwise.} \end{cases}$$

э

<ロ> (四) (四) (三) (三) (三)

・ロ・・ (日・・ (日・・ (日・)

・ロト ・回ト ・モト ・モト

● ▶ < ミ ▶

< ∃⇒

æ

</i>
< □ > < □ >

< ∃⇒

▲ 御 ▶ → ミ ▶

- < ≣ →

æ

 $E^2(t)$

< ≣ >

A ■

æ

Example

Example

Example

Yu. Nesterov S

11/19

Characteristic matrix functions

イロン イヨン イヨン イヨン

Э

・ 同 ト ・ ヨ ト ・ ヨ ト

Therefore,

・ 同 ト ・ ヨ ト ・ ヨ ト

Therefore,

• The elements of matrix $E_L(t) = \sum_{p=1}^{L} E^p(t)$ are log-convex characteristic functions for $\widehat{\mathcal{R}}_{i,j}^L$.

Therefore,

- The elements of matrix $E_L(t) = \sum_{p=1}^{L} E^p(t)$ are log-convex characteristic functions for $\widehat{\mathcal{R}}_{i,j}^L$.

回 と く ヨ と く ヨ と

Therefore,

- The elements of matrix $E_L(t) = \sum_{p=1}^{L} E^p(t)$ are log-convex characteristic functions for $\widehat{\mathcal{R}}_{i,j}^L$.

Properties:

向下 イヨト イヨト

Therefore,

- The elements of matrix $E_L(t) = \sum_{p=1}^{L} E^p(t)$ are log-convex characteristic functions for $\widehat{\mathcal{R}}_{i,j}^L$.
- The elements of matrix \$\tilde{E}(t) = (I E(t))^{-1} I\$ are the characteristic functions for \$\tilde{\mathcal{R}}_{i,j}\$.

Properties:

1. $E^{p}(0)^{(i,j)}$ is the number of routes of length p connecting j and i.

・ 同 ト ・ ヨ ト ・ ヨ ト

Therefore,

- The elements of matrix $E_L(t) = \sum_{p=1}^{L} E^p(t)$ are log-convex characteristic functions for $\widehat{\mathcal{R}}_{i,j}^L$.
- The elements of matrix \$\tilde{E}(t) = (I E(t))^{-1} I\$ are the characteristic functions for \$\tilde{\mathcal{R}}_{i,j}\$.

Properties:

1. $E^p(0)^{(i,j)}$ is the number of routes of length p connecting j and i.

2. $\tilde{E}(t)^{(i,j)} \neq 0$ if and only if j and i are connected.

回 と く ヨ と く ヨ と

Э

Denote by $\Psi(t)$ the matrix with the following entries $\Psi(t)^{(i,j)} = \ln ((I - E(t))^{-1} - I)^{(i,j)}, \quad i, j = 1, ..., n.$

(4月) (1日) (日) 日

Denote by
$$\Psi(t)$$
 the matrix with the following entries
 $\Psi(t)^{(i,j)} = \ln \left((I - E(t))^{-1} - I \right)^{(i,j)}, \quad i, j = 1, ..., n.$
Denote $\rho(t) = \max_{1 \le j \le n} |\lambda_j(E(t))|.$

回 と く ヨ と く ヨ と

Э

Denote by
$$\Psi(t)$$
 the matrix with the following entries
 $\Psi(t)^{(i,j)} = \ln ((I - E(t))^{-1} - I)^{(i,j)}, \quad i, j = 1, ..., n.$
Denote $\rho(t) = \max_{1 \le j \le n} |\lambda_j(E(t))|.$

Let us assume that any pair of nodes in \mathcal{N} is connected.

Denote by $\Psi(t)$ the matrix with the following entries $\Psi(t)^{(i,j)} = \ln ((I - E(t))^{-1} - I)^{(i,j)}, \quad i, j = 1, ..., n.$ Denote $\rho(t) = \max_{1 \le j \le n} |\lambda_j(E(t))|.$

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

1. dom
$$\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$$

・吊り ・ヨン ・ヨン ・ヨ

Denote by $\Psi(t)$ the matrix with the following entries $\Psi(t)^{(i,j)} = \ln ((I - E(t))^{-1} - I)^{(i,j)}, \quad i, j = 1, ..., n.$ Denote $\rho(t) = \max_{1 \le j \le n} |\lambda_j(E(t))|.$

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

- 1. dom $\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$
- **2.** Each entry $\Psi(t)^{(i,j)}$ is convex in t.

(4月) (3日) (3日) 日

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

1. dom
$$\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$$

2. Each entry $\Psi(t)^{(i,j)}$ is convex in t.

3. For any
$$\overline{t} \in \operatorname{dom} \Psi$$
 and $t \ge 0$ we have
$$\lim_{\mu \to 0} \mu \Psi(\overline{t} + t/\mu)^{(i,j)} = -SP_{j,i}(t).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

1. dom
$$\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$$

2. Each entry $\Psi(t)^{(i,j)}$ is convex in t.

3. For any
$$\overline{t} \in \operatorname{dom} \Psi$$
 and $t \ge 0$ we have
$$\lim_{\mu \to 0} \mu \Psi(\overline{t} + t/\mu)^{(i,j)} = -SP_{j,i}(t).$$

Derivatives:

(周) (ヨ) (ヨ) (ヨ)

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

1. dom
$$\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$$

2. Each entry $\Psi(t)^{(i,j)}$ is convex in t.

3. For any
$$\overline{t} \in \operatorname{dom} \Psi$$
 and $t \ge 0$ we have
$$\lim_{\mu \to 0} \mu \Psi(\overline{t} + t/\mu)^{(i,j)} = -SP_{j,i}(t).$$

Derivatives: for $\alpha = (k_1, k_2)$ we have $\frac{d\Psi^{(i,j)}(t)}{dt^{(\alpha)}} = \frac{e^{-t^{(\alpha)}}}{\tilde{E}(t)^{(i,j)}} \langle (I - E(t))^{-1} e_{k_2}, e_i \rangle \cdot \langle (I - E(t))^{-1} e_j, e_{k_1} \rangle,$ where e_k are coordinate vectors in \mathbb{R}^m .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let us assume that any pair of nodes in \mathcal{N} is connected. Then:

1. dom
$$\Psi \equiv \{t : \rho(t) < 1\} \supseteq \{t : t^{(\alpha)} > \ln n, \forall \alpha \in \mathcal{A}\}.$$

2. Each entry $\Psi(t)^{(i,j)}$ is convex in t.

3. For any
$$\overline{t} \in \operatorname{dom} \Psi$$
 and $t \ge 0$ we have
$$\lim_{\mu \to 0} \mu \Psi (\overline{t} + t/\mu)^{(i,j)} = -SP_{j,i}(t).$$

Derivatives: for $\alpha = (k_1, k_2)$ we have $\frac{d\Psi^{(i,j)}(t)}{dt^{(\alpha)}} = \frac{e^{-t^{(\alpha)}}}{\tilde{E}(t)^{(i,j)}} \langle (I - E(t))^{-1} e_{k_2}, e_i \rangle \cdot \langle (I - E(t))^{-1} e_j, e_{k_1} \rangle,$ where e_k are coordinate vectors in R^m . This is the expected flow $j \to i$ passing through $\alpha_{i,j}$.

Routes with bounded length

→ 御 → → 注 → → 注 →

æ

Routes with bounded length

伺い イヨト イヨト 三日

Routes with bounded length

For the source j and length of the route p define the functions: $\begin{array}{l}
a_{p}^{(i)}(t) = \mu \ln g_{\mathcal{R}_{i,j}^{p}}(t/\mu) \\
b_{p}^{(i)}(t) = \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^{p}}(t/\mu) \end{array}\right\}, \quad i = 1, \dots, n,$ Initialization: for $i = 1, \dots, n$ set $a_{1}^{(i)}(t) = b_{1}^{(i)}(t) = \begin{cases}
-t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\
-\infty, & \text{otherwise.} \end{cases}$ For the source j and length of the route p define the functions: $\begin{array}{l}
a_{p}^{(i)}(t) = \mu \ln g_{\mathcal{R}_{i,j}^{p}}(t/\mu) \\
b_{p}^{(i)}(t) = \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^{p}}(t/\mu) \\
\end{array}, \quad i = 1, \dots, n,$ Initialization: for $i = 1, \dots, n$ set $a_{1}^{(i)}(t) = b_{1}^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \\
\end{array}$ Iteration $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute For the source *j* and length of the route *p* define the functions: $\begin{array}{l}
a_{p}^{(i)}(t) = \mu \ln g_{\mathcal{R}_{i,j}^{p}}(t/\mu) \\
b_{p}^{(i)}(t) = \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^{p}}(t/\mu) \\
\end{array}, \quad i = 1, \dots, n,$ Initialization: for $i = 1, \dots, n$ set $a_{1}^{(i)}(t) = b_{1}^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ Iteration $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $a_{p+1}^{(i)}(t) = \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_{p}^{(k)}(t) - t^{(\alpha)})/\mu}\right),$

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{ll} a_{p}^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^{p}}(t/\mu) \\ b_{p}^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,i}^{p}}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ **Iteration** $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $\begin{aligned} &a_{p+1}^{(i)}(t) &= \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right), \\ &b_{p+1}^{(i)}(t) &= \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right). \end{aligned}$

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{l} a_p^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^p}(t/\mu) \\ b_p^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^p}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ Iteration $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $a_{p+1}^{(i)}(t) = \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right),$ $b_{p+1}^{(i)}(t) = \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right).$ **Complexity:** O(m) operations per iteration,

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{l} a_p^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^p}(t/\mu) \\ b_p^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^p}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ Iteration $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $a_{p+1}^{(i)}(t) = \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right),$ $b_{p+1}^{(i)}(t) = \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right).$ **Complexity:** O(m) operations per iteration, O(mL) in total.

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{l} a_p^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^p}(t/\mu) \\ b_p^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^p}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j,i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ **Iteration** $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $a_{p+1}^{(i)}(t) = \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right),$ $b_{p+1}^{(i)}(t) = \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right).$ **Complexity:** O(m) operations per iteration, O(mL) in total. **Gradient in** *t*: same complexity by Fast Backward Differentiation.

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{l} a_p^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^p}(t/\mu) \\ b_p^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^p}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ **Iteration** $(p = 1, \dots, L - 1)$: for $i = 1, \dots, n$ compute $\begin{aligned} a_{p+1}^{(i)}(t) &= \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right), \\ b_{p+1}^{(i)}(t) &= \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right). \end{aligned}$ **Complexity:** O(m) operations per iteration, O(mL) in total. **Gradient in** *t*: same complexity by Fast Backward Differentiation. **Limiting case** $(\mu \rightarrow 0)$: shortest path scheme

For the source *j* and length of the route *p* define the functions: $\left. \begin{array}{l} a_p^{(i)}(t) &= \mu \ln g_{\mathcal{R}_{i,j}^p}(t/\mu) \\ b_p^{(i)}(t) &= \mu \ln g_{\widehat{\mathcal{R}}_{i,j}^p}(t/\mu) \end{array} \right\}, \quad i = 1, \dots, n,$ **Initialization:** for $i = 1, \ldots, n$ set $a_1^{(i)}(t) = b_1^{(i)}(t) = \begin{cases} -t^{(\alpha)}, & \text{if } \alpha = (j, i) \in \mathcal{A}, \\ -\infty, & \text{otherwise.} \end{cases}$ **Iteration** $(p = 1, \ldots, L - 1)$: for $i = 1, \ldots, n$ compute $\begin{aligned} a_{p+1}^{(i)}(t) &= \mu \ln \left(\sum_{\alpha = (k,i) \in \mathcal{A}} e^{(a_p^{(k)}(t) - t^{(\alpha)})/\mu} \right), \\ b_{p+1}^{(i)}(t) &= \mu \ln \left(e^{a_{p+1}^{(i)}(t)/\mu} + e^{b_p^{(i)}(t)/\mu} \right). \end{aligned}$ **Complexity:** O(m) operations per iteration, O(mL) in total. **Gradient in** *t*: same complexity by Fast Backward Differentiation. **Limiting case** ($\mu \rightarrow 0$): shortest path scheme (Ford-Fulkerson).

Stochastic route choice model

イロン イヨン イヨン イヨン

Э

Let \mathcal{R} be the set of routes from node p to node k.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

3

Let \mathcal{R} be the set of routes from node p to node k. For $r \in \mathcal{R}$, the probability $p_r(t)$ to choose this route is $p_r(t) = e^{-c_r(t)/\mu} / \sum_{a \in \mathcal{R}} e^{-c_r(t)/\mu}.$

向下 イヨト イヨト

Let \mathcal{R} be the set of routes from node p to node k. For $r \in \mathcal{R}$, the probability $p_r(t)$ to choose this route is

$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t) = d \sum_{r \in \mathcal{R}} p_r(t) a_r.$$
$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t) = d \sum_{r \in \mathcal{R}} p_r(t) a_r.$$

Let us introduce the potential $\psi_{\mathcal{R}}(t) = \ln \sum_{r \in \mathcal{R}} e^{-c_r(t)}.$

$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t)=d\sum\limits_{r\in\mathcal{R}}p_r(t)a_r.$$

et us introduce the potential $\psi_\mathcal{R}(t)=\ln\sum\limits_{r\in\mathcal{R}}e^{-c_r(t)}.$

Lemma.

L

$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t) = d \sum_{r \in \mathcal{R}} p_r(t) a_r.$$

Let us introduce the potential $\psi_{\mathcal{R}}(t) = \ln \sum_{r \in \mathcal{R}} e^{-c_r(t)}$.

Lemma. If $t/\mu \in \operatorname{dom} \Psi_{\mathcal{R}}$, then $f(t) = -d\nabla \psi_{\mathcal{R}}(t/\mu)$.

$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t) = d \sum_{r \in \mathcal{R}} p_r(t) a_r.$$

Let us introduce the potential $\psi_{\mathcal{R}}(t) = \ln \sum_{r \in \mathcal{R}} e^{-c_r(t)}$.

Lemma. If $t/\mu \in \operatorname{dom} \Psi_{\mathcal{R}}$, then $f(t) = -d\nabla \psi_{\mathcal{R}}(t/\mu)$. This flow is feasible.

$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_r(t)/\mu}$$

For a demand flow d, the expected arc flow vector is

$$f(t) = d \sum_{r \in \mathcal{R}} p_r(t) a_r.$$

Let us introduce the potential $\psi_{\mathcal{R}}(t) = \ln \sum_{r \in \mathcal{R}} e^{-c_r(t)}$.

Lemma. If $t/\mu \in \operatorname{dom} \Psi_{\mathcal{R}}$, then $f(t) = -d\nabla \psi_{\mathcal{R}}(t/\mu)$. This flow is feasible.

Interesting sets; $\widehat{\mathcal{R}}_{p,k}^{L}$, $\widetilde{\mathcal{R}}_{p,k}$.

回 と く ヨ と く ヨ と

Э

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$.

- 4 回 2 - 4 □ 2 - 4 □

- 3

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

• the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,

・日・ ・ヨ・ ・ヨ・

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance:

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (Stable Dynamics).

A (1) > A (2) > A

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (*Stable Dynamics*). **Loading:** Origin-destination flow data \mathcal{OD} .

・ 戸 ト ・ ヨ ト ・ ヨ ト

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (*Stable Dynamics*). **Loading:** Origin-destination flow data \mathcal{OD} .

Equilibrium: Drivers choose paths in accordance to Logit Model.

・吊り ・ヨン ・ヨン ・ヨ

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (*Stable Dynamics*). **Loading:** Origin-destination flow data \mathcal{OD} .

Equilibrium: Drivers choose paths in accordance to Logit Model.

 $\begin{array}{ll} \textbf{Optimization problem:} & \min_{t \geq \overline{t}} \left(\langle \overline{f}, t \rangle + \mu \psi(t/\mu) \right), \quad (\mu > 0) \\ \text{where } \psi(t) = \sum_{(p,k) \in \mathcal{OD}} d_{p,k} \psi_{\mathcal{R}_{p,k}}(t). \end{array}$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (*Stable Dynamics*). **Loading:** Origin-destination flow data \mathcal{OD} .

Equilibrium: Drivers choose paths in accordance to Logit Model. **Optimization problem:** $\min_{t \ge \overline{t}} \left(\langle \overline{f}, t \rangle + \mu \psi(t/\mu) \right), \quad (\mu > 0)$ where $\psi(t) = \sum_{(p,k) \in OD} d_{p,k} \psi_{\mathcal{R}_{p,k}}(t).$ **NB 1.** For $\widehat{\mathcal{R}}_{p,k}^{L}$ and $\widetilde{\mathcal{R}}_{p,k}$ this function is computable.

・吊り ・ヨン ・ヨン ・ヨ

Network model: $\mathcal{N} = (\mathcal{V}, \mathcal{A})$. For each arc α ,

- the travel time satisfies $t^{(\alpha)} \geq \overline{t}^{(\alpha)}$,
- the arc flow satisfied $0 \le f^{(\alpha)} \le \overline{f}^{(\alpha)}$.

Performance: If $f^{(\alpha)} < \overline{f}^{(\alpha)}$, then $t^{(\alpha)} = \overline{t}^{(\alpha)}$ (*Stable Dynamics*). **Loading:** Origin-destination flow data \mathcal{OD} .

Equilibrium: Drivers choose paths in accordance to Logit Model. **Optimization problem:** $\min_{t \ge \overline{t}} \left(\langle \overline{f}, t \rangle + \mu \psi(t/\mu) \right), \quad (\mu > 0)$ where $\psi(t) = \sum_{(p,k) \in OD} d_{p,k} \psi_{\mathcal{R}_{p,k}}(t).$

NB 1. For $\widehat{\mathcal{R}}_{p,k}^{L}$ and $\widetilde{\mathcal{R}}_{p,k}$ this function is computable. **2.** The equilibrium flow is $f_{p,k}^{*} = -d_{p,k}\nabla\psi_{\mathcal{R}_{p,k}}(t^{*}/\mu)$, where $t^{*} \in \mathbb{R}^{m}$ is the equilibrium time.

- 4 回 2 - 4 □ 2 - 4 □

æ

Data:
$$\mathcal{OD} = \mathcal{O} \times \mathcal{D}$$
,

- 4 回 2 - 4 □ 2 - 4 □

æ

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

伺下 イヨト イヨト

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$.

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

- Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,
- Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$.

Denote by Φ the total OD-flow.

伺下 イヨト イヨト

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$.

Denote by Φ the total OD-flow.

Expected minimal cost: $\theta_{\mathcal{R}_{p,k}}(t) = -\mu \psi_{\mathcal{R}_{p,k}}(t/\mu)$ (by Logit).

マロト イヨト イヨト 二日

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$. Denote by Φ the total OD-flow.

Expected minimal cost: $\theta_{\mathcal{R}_{p,k}}(t) = -\mu \psi_{\mathcal{R}_{p,k}}(t/\mu)$ (by Logit).

Probability of link
$$i \to k$$
: $\pi_{i,k}(t) = \frac{P^{(i)}Q^{(k)}e^{-\theta_{\mathcal{R}_{i,k}}(t)/\mu}}{\sum_{(\ell,j)\in\mathcal{OD}}P^{(\ell)}Q^{(j)}e^{-\theta_{\mathcal{R}_{\ell,j}}(t)/\mu}}.$

マロト イヨト イヨト 二日

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$. Denote by Φ the total OD-flow.

Expected minimal cost: $\theta_{\mathcal{R}_{p,k}}(t) = -\mu \psi_{\mathcal{R}_{p,k}}(t/\mu)$ (by Logit). Probability of link $i \to k$: $\pi_{i,k}(t) = \frac{P^{(i)}Q^{(k)}e^{-\theta_{\mathcal{R}_{i,k}}(t)/\mu}}{\sum_{(\ell,j)\in\mathcal{OD}}P^{(\ell)}Q^{(j)}e^{-\theta_{\mathcal{R}_{\ell,j}}(t)/\mu}}$. Expected $(i \to k)$ arc flow: $-\Phi \cdot \pi_{i,k}(t)\nabla \psi_{\mathcal{R}_{i,k}}(t/\mu)$.

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$. Denote by Φ the total OD-flow.

Expected minimal cost: $\theta_{\mathcal{R}_{p,k}}(t) = -\mu \psi_{\mathcal{R}_{p,k}}(t/\mu)$ (by Logit). Probability of link $i \to k$: $\pi_{i,k}(t) = \frac{P^{(i)}Q^{(k)}e^{-\theta_{\mathcal{R}_{i,k}}(t)/\mu}}{\sum_{(\ell,j)\in\mathcal{OD}}P^{(\ell)}Q^{(j)}e^{-\theta_{\mathcal{R}_{\ell,j}}(t)/\mu}}$. Expected $(i \to k)$ arc flow: $-\Phi \cdot \pi_{i,k}(t)\nabla\psi_{\mathcal{R}_{i,k}}(t/\mu)$. Optimization problem: $\min_{t \ge \overline{t}} [\langle \overline{f}, t \rangle + \Phi \cdot \mu \psi(t/\mu)],$ where $\psi(t) = \ln \left(\sum_{i \in \mathcal{O}} \sum_{j \in \mathcal{D}} P^{(i)}Q^{(j)}g_{\mathcal{R}_{i,j}}(t) \right).$

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

Data: $\mathcal{OD} = \mathcal{O} \times \mathcal{D}$,

• Weights $P^{(i)}$, reflecting the population for $i \in \mathcal{O}$,

• Weights $Q^{(j)}$, reflecting the number of jobs for $j \in \mathcal{D}$. Denote by Φ the total OD-flow.

Expected minimal cost: $\theta_{\mathcal{R}_{p,k}}(t) = -\mu \psi_{\mathcal{R}_{p,k}}(t/\mu)$ (by Logit).

Probability of link $i \to k$: $\pi_{i,k}(t) = \frac{P^{(i)}Q^{(k)}e^{-\theta_{\mathcal{R}_{i,k}}(t)/\mu}}{\sum_{(\ell,j)\in\mathcal{OD}}P^{(\ell)}Q^{(j)}e^{-\theta_{\mathcal{R}_{\ell,j}}(t)/\mu}}.$

Expected $(i \rightarrow k)$ arc flow: $-\Phi \cdot \pi_{i,k}(t) \nabla \psi_{\mathcal{R}_{i,k}}(t/\mu)$.

Optimization problem: $\min_{t \ge \overline{t}} [\langle \overline{f}, t \rangle + \Phi \cdot \mu \psi(t/\mu)],$

where $\psi(t) = \ln \left(\sum_{i \in \mathcal{O}} \sum_{j \in \mathcal{D}} P^{(i)} Q^{(j)} g_{\mathcal{R}_{i,j}}(t) \right).$

Expected OD-flows: can be computed by the gradients.

(4) E (1)

(ロ) (四) (E) (E) (E)

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

(ロ) (同) (E) (E) (E)

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

2. Stochastic model is more adequate.

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.

(4月) イヨト イヨト

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ?

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.

• Choice of μ ? We need to ensure that \overline{t} is feasible: $\rho(E(\overline{t}/\mu)) < 1.$

・回 と く ヨ と く ヨ と

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ? We need to ensure that \overline{t} is feasible:

$$\rho(E(\overline{t}/\mu)) < 1.$$

Choice of the optimization method? Characteristics of the problem?

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ? We need to ensure that \overline{t} is feasible:

$$\rho(E(\overline{t}/\mu)) < 1.$$

Choice of the optimization method? Characteristics of the problem?

(New possibility: Universal Gradient Methods.)

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ? We need to ensure that \overline{t} is feasible:

$$\rho(E(\overline{t}/\mu)) < 1.$$

Choice of the optimization method? Characteristics of the problem?

(New possibility: Universal Gradient Methods.)

4. Open questions.
Conclusion

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ? We need to ensure that \overline{t} is feasible:

$$\rho(E(\overline{t}/\mu)) < 1.$$

Choice of the optimization method? Characteristics of the problem?

(New possibility: Universal Gradient Methods.)

4. Open questions.

• Interpretation of $\rho(E(t))$?

Conclusion

1. Stochastic equilibrium can be computed as a solution of a smooth convex minimization problem.

- 2. Stochastic model is more adequate.
- 3. Important aspects.
 - Choice of μ ? We need to ensure that \overline{t} is feasible:

$$\rho(E(\overline{t}/\mu)) < 1.$$

Choice of the optimization method? Characteristics of the problem?

(New possibility: Universal Gradient Methods.)

4. Open questions.

- Interpretation of $\rho(E(t))$?
- Network design (improve the structure, developments, long-run, etc.).

THANK YOU FOR YOUR ATTENTION!

<ロ> (四) (四) (三) (三) (三)