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Discrete choice models (Logit)

1. We have k products with the costs c(1), . . . , c(k).

2. A consumer estimates the actual value of the cost with an
additive error:

c̃(i) = c(i) + εi , i = 1, . . . , k .

His choice is then i∗ : c̃(i∗) = min
1≤i≤k

c̃(i).

3. If all εi are independent and have the same double-exponential
distribution with deviation µ,then

p(i) = e−c(i)/µ

k∑
j=1

e−c(j)/µ

, i = 1, . . . , k.

(Logit model.)
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Observation

Denote c − (c(1), . . . , c(k))T ∈ Rk , p = (p(1), . . . , p(k))T ∈ Rk ,

ψ(c) = ln

(
k∑

i=1
e−c(i)

)
.

Then ψ(c) is convex in c and p = −∇ψ(c).

We can go both ways:

From a given c we can compute p: p = −∇ψ(c).

From a given p we can compute c = c(p) :
c(p) = arg min

c
[ ψ(c) + 〈p, c〉],

where 〈x , u〉 =
k∑

i=1
p(i)c(i).

NB: 1. This minimization problem is convex.

2. lim
µ→0

(−µψ(c/µ)) = min
1≤i≤k

c(i).
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Composite products

We have m ingredients with the costs t = (t(1), . . . , t(m))T ∈ Rm.

The cost of the product i is the sum of the costs of the ingredients:

c(i) =
m∑

j=1
a

(j)
i t(j) = 〈ai , t〉, i = 1, . . . , k .

(a
(j)
i is the quantity of the ingredient j in the product i .)

Denote ψ(t) = ln

(
k∑

i=1
e−〈ai ,t〉

)
.

Then the vector f = −∇ψ(t) =

k∑
i=1

e−〈ai ,t〉ai

k∑
i=1

e−〈ai ,t〉
=

k∑
i=1

piai

gives the expected consumption of the ingredients, which
corresponds to the prices t.

Since ψ(t) is convex, we can go in both directions:
t ⇒ f (t), f ⇒ t(f ).
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Transportation networks: Example

q4
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q
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S
S
S
SSw

�
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�
��7

S
S
S
SSo

�

t1t2
t6

t3t4

t5

Strategies (routes from 1 to 4):
a1 = (0, 1, 0, 1, 0, 0)T , c1(t) = t2 + t4,
a2 = (1, 0, 1, 0, 0, 0)T , c2(t) = t1 + t3,
a3 = (1, 0, 0, 1, 1, 0)T , c3(t) = t1 + t4 + t5.

Potential function: ψ(t) = ln
(
e−c1(t) + e−c2(t) + e−c3(t)

)
.

Then the gradient f = −∇ψ(t) = p1a1 + p2a2 + p3a3

is the expected flow on the arcs (with respect to given time t).
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)
.

Then the gradient f = −∇ψ(t) = p1a1 + p2a2 + p3a3

is the expected flow on the arcs (with respect to given time t).
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Sets of routes in general networks

Consider the network N with n nodes and m arcs:
A = {(i1, j1), . . . , (im, jm) : 1 ≤ ik , jk ≤ n, k = 1, . . . ,m.

An ordered set of pairs from A : r = {(i0, i1), (i1, i2), . . . , (ip−1, ip)}
is called the route in N , connecting i0 and ip.

The value l(r) = p is called the length of the route.
Denote by a(r) ∈ Rm the vector:

a(r)(k) =

{
1, if (ik , jk) ∈ r ,
0, otherwise.

k = 1, . . .m.

Then for any t ∈ Rm we can define the cost cr (t) = 〈a(r), t〉.
Def. Let R be some set of routes in N . We call

gR(t) =
∑
r∈R

e−cr (t)

the characteristic function of R. For R = ∅ define g∅(t) ≡ 0.
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Properties of potential functions

Def. The function ψR(t) = ln gR(t) is called potential function of
the set of routes R.

Let R be non-empty and finite. Denote
SPR(t) = min

r
{cr (t) : r ∈ R}. (It is concave.)

Theorem. 1. ψR(t) is a convex function.

2. The vector −∇ψR(t) is the expected flow in the network.

3. For any t, t̄ ∈ Rm we have lim
µ→∞

(
− 1
µψR(t̄ + µt)

)
= SPR(t).

Main property: for R = R1
⋃
R2 with R1

⋂
R2 = ∅, we have

ψR(t) = ln
(

eψR1
(t) + eψR2

(t)
)

.
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Main difficulties

1. In general networks, the number of acyclic routes is
exponentially big.

2. The number of routes with cycles is infinite.

Can we compute characteristic functions

of some reasonably big sets of routes?
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Special sets of routes

Let us fix two nodes i and j . Denote:

Rp
i ,j the set of all routes of length p

connecting j and i .

R̂L
i ,j =

L⋃
p=1
Rp

i ,j ,

R̃i ,j =
∞⋃

p=1
Rp

i ,j .

Denote by E (t) the following n × n-matrix:

E (t)(i ,j) =

 e−t(α)
, if α ≡ (j , i) ∈ A,

0, otherwise.
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Example
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S
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S
S
S
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t1t2
t6

t3t4

t5

Then

E (t) =


0 0 e−t(6)

0

e−t(1)
0 0 0

e−t(2)
e−t(5)

0 0

0 e−t(3)
e−t(4)

0

 .

E 2(t) =


e−t(2)−t(6)

e−t(5)−t(6)
0 0

0 0 e−t(1)−t(6)
0

e−t(1)−t(5)
0 e−t(2)−t(6)

0

e−t(1)−t(3)
+ e−t(2)−t(4)

e−t(4)−t(5)
0 0

 .
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Characteristic matrix functions

Theorem. Each element of matrix function Ep(t), p ≥ 1, is the
characteristic function for corresponding set of routs Rp

i ,j .

Therefore,

The elements of matrix EL(t) =
L∑

p=1
Ep(t) are log-convex

characteristic functions for R̂L
i ,j .

The elements of matrix Ẽ (t) = (I − E (t))−1 − I are the
characteristic functions for R̃i ,j .

Properties:

1. Ep(0)(i ,j) is the number of routes of length p connecting j and i .

2. Ẽ (t)(i ,j) 6= 0 if and only if j and i are connected.
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Asymptotic potential function

Denote by Ψ(t) the matrix with the following entries

Ψ(t)(i ,j) = ln
(
(I − E (t))−1 − I

)(i ,j)
, i , j = 1, . . . , n.

Denote ρ(t) = max
1≤j≤n

|λj(E (t))|.

Let us assume that any pair of nodes in N is connected. Then:

1. dom Ψ ≡ {t : ρ(t) < 1} ⊇ {t : t(α) > ln n, ∀α ∈ A}.
2. Each entry Ψ(t)(i ,j) is convex in t.

3. For any t̄ ∈ dom Ψ and t ≥ 0 we have
lim
µ→0

µΨ(t̄ + t/µ)(i ,j) = −SPj ,i (t).

Derivatives: for α = (k1, k2) we have
dΨ(i,j)(t)

dt(α) = e−t(α)

Ẽ(t)(i,j) 〈(I − E (t))−1ek2 , ei 〉 · 〈(I − E (t))−1ej , ek1〉,
where ek are coordinate vectors in Rm.
This is the expected flow j → i passing through α.
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Ẽ(t)(i,j) 〈(I − E (t))−1ek2 , ei 〉 · 〈(I − E (t))−1ej , ek1〉,
where ek are coordinate vectors in Rm.
This is the expected flow j → i passing through α.

Yu. Nesterov Stochastic Equilibrium in Transportation Networks 13/19



Asymptotic potential function

Denote by Ψ(t) the matrix with the following entries

Ψ(t)(i ,j) = ln
(
(I − E (t))−1 − I

)(i ,j)
, i , j = 1, . . . , n.

Denote ρ(t) = max
1≤j≤n

|λj(E (t))|.

Let us assume that any pair of nodes in N is connected. Then:

1. dom Ψ ≡ {t : ρ(t) < 1} ⊇ {t : t(α) > ln n, ∀α ∈ A}.
2. Each entry Ψ(t)(i ,j) is convex in t.

3. For any t̄ ∈ dom Ψ and t ≥ 0 we have
lim
µ→0

µΨ(t̄ + t/µ)(i ,j) = −SPj ,i (t).

Derivatives:

for α = (k1, k2) we have
dΨ(i,j)(t)

dt(α) = e−t(α)
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1. dom Ψ ≡ {t : ρ(t) < 1} ⊇ {t : t(α) > ln n, ∀α ∈ A}.
2. Each entry Ψ(t)(i ,j) is convex in t.

3. For any t̄ ∈ dom Ψ and t ≥ 0 we have
lim
µ→0

µΨ(t̄ + t/µ)(i ,j) = −SPj ,i (t).
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Routes with bounded length

For the source j and length of the route p define the functions:

a
(i)
p (t) = µ ln gRp

i,j
(t/µ)

b
(i)
p (t) = µ ln gR̂p

i,j
(t/µ)

 , i = 1, . . . , n,

Initialization: for i = 1, . . . , n set

a
(i)
1 (t) = b

(i)
1 (t) =

{
−t(α), if α = (j , i) ∈ A,
−∞, otherwise.

Iteration (p = 1, . . . , L− 1): for i = 1, . . . , n compute

a
(i)
p+1(t) = µ ln

( ∑
α=(k,i)∈A

e(a
(k)
p (t)−t(α))/µ

)
,

b
(i)
p+1(t) = µ ln

(
ea

(i)
p+1(t)/µ + eb

(i)
p (t)/µ

)
.

Complexity: O(m) operations per iteration, O(mL) in total.
Gradient in t: same complexity by Fast Backward Differentiation.

Limiting case (µ→ 0): shortest path scheme (Ford-Fulkerson).
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Stochastic route choice model

Let R be the set of routes from node p to node k .
For r ∈ R, the probability pr (t) to choose this route is

pr (t) = e−cr (t)/µ/
∑

q∈R
e−cr (t)/µ.

For a demand flow d , the expected arc flow vector is

f (t) = d
∑
r∈R

pr (t)ar .

Let us introduce the potential ψR(t) = ln
∑
r∈R

e−cr (t).

Lemma. If t/µ ∈ dom ΨR, then f (t) = −d∇ψR(t/µ).
This flow is feasible.

Interesting sets; R̂L
p,k , R̃p,k .
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Stochastic traffic assignment

Network model: N = (V,A). For each arc α,

the travel time satisfies t(α) ≥ t̄(α),

the arc flow satisfied 0 ≤ f (α) ≤ f̄ (α).

Performance: If f (α) < f̄ (α), then t(α) = t̄(α) (Stable Dynamics).

Loading: Origin-destination flow data OD.

Equilibrium: Drivers choose paths in accordance to Logit Model.

Optimization problem: min
t≥t̄

(
〈f̄ , t〉+ µψ(t/µ)

)
, (µ > 0)

where ψ(t) =
∑

(p,k)∈OD
dp,kψRp,k

(t).

NB 1. For R̂L
p,k and R̃p,k this function is computable.

2. The equilibrium flow is f ∗p,k = −dp,k∇ψRp,k
(t∗/µ), where

t∗ ∈ Rm is the equilibrium time.
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Incomplete information

Data: OD = O ×D,

Weights P(i), reflecting the population for i ∈ O,

Weights Q(j), reflecting the number of jobs for j ∈ D.

Denote by Φ the total OD-flow.

Expected minimal cost: θRp,k
(t) = −µψRp,k

(t/µ) (by Logit).

Probability of link i → k: πi ,k(t) = P(i)Q(k)e
−θRi,k

(t)/µ∑
(`,j)∈OD P(`)Q(j)e

−θR`,j
(t)/µ .

Expected (i → k) arc flow: −Φ · πi ,k(t)∇ψRi,k
(t/µ).

Optimization problem: min
t≥t̄

[〈f̄ , t〉+ Φ · µψ(t/µ)],

where ψ(t) = ln
(∑

i∈O
∑

j∈D P(i)Q(j)gRi,j
(t)
)

.

Expected OD-flows: can be computed by the gradients.
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Conclusion

1. Stochastic equilibrium can be computed as a solution of a
smooth convex minimization problem.

2. Stochastic model is more adequate.

3. Important aspects.

Choice of µ? We need to ensure that t̄ is feasible:
ρ(E (t̄/µ)) < 1.

Choice of the optimization method? Characteristics of the
problem?
(New possibility: Universal Gradient Methods.)

4. Open questions.

Interpretation of ρ(E (t))?

Network design (improve the structure, developments,
long-run, etc.).
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Thank you for your attention!
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