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Beginnings

Economic idea—qualitative version of the Fundamental
Theorem of Asset Pricing (FTAP). In a market without
frictions, there is equivalence between the following statements:

1. There are no possibilities for free lunch.

2. Agents’ utility maximisation problems have solutions.

3. There exists a linear valuation rule which is consistent:
I Liquid assets are valued correctly;
I Non-zero claims have non-zero value.

Questions: How are the previous made precise?

1. How should free lunch be defined? (Further, should we always
forbid its existence, even if we cannot construct one?)

2. How should utility maximisation problems be formulated?

3. How do linear consistent valuation rules look like?
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Further steps — in a nutshell

After the ’98 D&S FTAP, viability in frictionless models seemed
well-understood. However, in the 00’s, interest in models that
allowed for certain “free lunches” started to form:

I Stochastic Portfolio (Optimisation) Theory of R. Fernholz.
Aim: discover profits rather than banning the model.

I Benchmark approach of E. Platen builds a valuation
framework using a very special portfolio as numéraire.

I Markets with “bubbles” in asset prices gained popularity.

Further research on viability and valuation was carried out,
utilising a descriptive, rather than normative approach.

I Deflators, not risk-neutral probabilities, became important.

I Exact connections to numéraire portfolios were established.

I Existence of arbitrage was characterised in terms of predictable
characteristics of the model, making it easily verifiable.

I Valuation ideas were extended, covering “imperfect” markets.
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Extending the modelling framework — natural questions

1. What about models with infinite number of liquid assets?

I Bond markets — continuous maturities.

I “Large” financial stock markets at the limit.

I Markets with traded options — continuous maturities, strikes.

2. Portfolio constraints?

I Restrictions on fractions of investment; for example,
no-short-sale constraints.

3. Possibility of default for the whole economy?

4. Model uncertainty?

I Slew of (potentially mutually singular) underlying probabilities.
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Stochastic framework

State space E (Polish), denoting possible states in economy.

I Append cemetery state 4 to E .

I For right-continuous ω : R+ 7→ E ∪ {4}, define

ζ(ω) := inf {t ∈ R+ | ωt = 4} .

to be the economy’s default time (or lifetime).

Underlying stochastic basis:
(
Ω,F

)
, where

I Ω: set of all right-continuous ω : R+ 7→ E ∪ {4} such that
ω0 ∈ E and ωt = 4 holds for all t ∈ [ζ(ω),∞).

I F: right-continuous enlargement of natural filtration of ω.

Note that F is not assumed complete, and that Fζ− = F∞(=: F).

Notation: O: optional processes, T : stopping times.
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Prior-to-ζ equivalent probability measures

Definition: Two probabilities P and P̃ on (Ω,F) are called

prior-to-ζ equivalent, denoted by P̃ <ζ∼ P, if

P̃ [AT ∩ {T < ζ}] = 0 ⇐⇒ P [AT ∩ {T < ζ}] = 0

holds for all T ∈ T and AT ∈ FT .

I strictly weaker notion than “local” equivalence.

Proposition. P̃ <ζ∼ P ⇐⇒ ∃ P-supermartingale Y with Y0 = 1,
[[0, ζ[[ ⊆ {Y > 0} (up to P-evanescence), such that

P̃ [AT ∩ {T < ζ}] = EP [YT ; AT ∩ {T < ζ}] (DENS)

holds for all T ∈ T and AT ∈ FT .

Theorem [Föllmer ’72]. For a P-supermartingale Y with Y0 = 1,
[[0, ζ[[ ⊆ {Y > 0}, there exists (!) P̃ such that (DENS) holds.



Prior-to-ζ equivalent probability measures

Definition: Two probabilities P and P̃ on (Ω,F) are called

prior-to-ζ equivalent, denoted by P̃ <ζ∼ P, if

P̃ [AT ∩ {T < ζ}] = 0 ⇐⇒ P [AT ∩ {T < ζ}] = 0

holds for all T ∈ T and AT ∈ FT .

I strictly weaker notion than “local” equivalence.

Proposition. P̃ <ζ∼ P ⇐⇒ ∃ P-supermartingale Y with Y0 = 1,
[[0, ζ[[ ⊆ {Y > 0} (up to P-evanescence), such that

P̃ [AT ∩ {T < ζ}] = EP [YT ; AT ∩ {T < ζ}] (DENS)

holds for all T ∈ T and AT ∈ FT .
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Foretellability of ζ

Definition: Say that ζ is foretellable under P if there exists a
nondecreasing sequence (τn)n∈N of stopping times such that:

I τn ≤ ζ and P [τn < ζ] = 1 holds for all n ∈ N, and

I P [limn→∞ τn = ζ] = 1.

Theorem: For any probability P on (Ω,F), there exists P <ζ∼ P
with the property that ζ is foretellable under P.

I P is constructed in a (maximal) way so that the “density”
process

(
dP/dP

)
|F· is non-increasing.

I This result allows use of localising techniques later on.
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Wealth processes: the guiding example

Liquid assets: S ≡ (S i )i∈I , where I is an arbitrary index set.

I S i right-continuous and S i = S i I[[0,ζ[[ holds for all i ∈ I .

I All assets and wealth denominated in units of S0 ≡ I[[0,ζ[[.

Wealth process-set X with (normalised) unit initial capital : all
nonnegative processes of the form

X =

(
1 +

∫ ·
0

HtdSt

)
I[[0,ζ[[,

where H predictable, R I -valued, whenever integral is well-defined:

I always for H being simple (buy-and-hold, finite holdings);

I if I is finite and S semimartingale, for all S-integrable H.

Constraints: ask that (H iS i
−)i∈I ∈ X−C, where C is a predictable

process with values in convex subsets of R I such that 0 ∈ C.
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Wealth-process sets: abstract definition

Wealth-process set. The class X of wealth processes starting
from normalized unit capital is such that:

1. Each X ∈ X is a nonnegative, adapted, right-continuous with
X0 = 1, as well as X = X I[[0,ζ[[.

2. I[[0,ζ[[ ∈ X .

3. X is fork-convex : ∀τ ∈ R+, X ∈ X , ∀X ′ ∈ X , X ′′ ∈ X with
[[0, ζ[[ ⊆ {X ′ > 0, X ′′ > 0}, and ∀[0, 1]-valued Fτ -measurable
ατ , the process defined below is also an element of X :

t 7→


Xt , if 0 ≤ t < ζ ∧ τ,
ατ (Xτ/X ′τ ) X ′t + (1− ατ ) (Xτ/X ′′τ ) X ′′t , if ζ ∧ τ ≤ t < ζ,

0, if ζ ≤ t,
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Super-hedging

Super-hedging: for V ∈ O+ and T ∈ T , define

p(V ,T ) := inf {x > 0 | ∃X x ∈ xX with P [X x
T < VT , T < ζ] = 0} ,

where p(V ,T ) =∞ when the last set is empty.

Approximate super-hedging: replace the qualifier
“∃X x ∈ xX with P [X x

T < VT , T < ζ]” above with

∀ε > 0, ∃X x ,ε ∈ xX with P
[
X x ,ε
T < VT , T < ζ

]
< ε.

Remarks:

I Both quantities are invariant under prior-to-ζ equivalent
probability changes.

I Clearly, p ≤ p.

I For X without “closedness” properties, p is more appropriate
(for example, it is continuous from below).
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Market viability via condition NA1

Arbitrage of the first kind: V ∈ O+ and T ∈ R+ with

p(V ,T ) = 0 and P [VT > 0, T < ζ] > 0.

If no opportunities for such arbitrage exist, say that NA1 holds.

I NA1 invariant under prior-to-ζ equivalent probability changes.

I Appellation follows Kabanov and Kramkov from their theory
of large financial markets.

I In classical theory, it is weaker than the NFLVR condition of
Delbaen and Schachermayer. It is equivalent to Kabanov’s BK
condition and Kar(atz+dar)as’ NUPBR condition.

I NA1 is a numéraire-invariant notion.
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Fundamental Theorem of Asset Pricing

Prior-to-ζ equivalent supermartingale measure: A probability
Q on (Ω,F) with the following properties:

I Q <ζ∼ P;

I X is a (nonnegative) supermartingale for all X ∈ X .

Q: class of all prior-to-ζ equivalent supermartingale measures.

Theorem [FTAP]. In the previous setting,

NA1 ⇐⇒ Q 6= ∅.

Proof. ⇐= is (almost) trivial. Implication =⇒ in next slide.

Remark: No hope for local martingales in this framework.
However, if X is generated by finite-dimensional S without
constraints, then NA1 ⇐⇒ ∃ prior-to-ζ ELMM.
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NA1 and (log-)utility maximisation

Back to economic formulation of FTAP: Validity of NA1 is
connected to the ability to solve the log-utility maximisation
problem, through the numéraire portfolio. More precisely, and in
order to show the difficult implication =⇒:

I Assume w.l.o.g. that (τn)n∈N foretells ζ under P.

I For each n ∈ N, there exists χn ∈ {Xτn | X ∈ X}L
0

such that
EP [Xτn/χn] = EP [ynXτn ] ≤ 1 (with yn := 1/χn) for all
n ∈ N. In effect, χn is the expected-log-optimal element.

I By consistency (myopic property of log-optimality) and
regularisation, one constructs a process Ŷ with Ŷ0 = 1,
{Ŷ > 0} = [[0, ζ[[, with the property that Ŷ X is a
supermartingale under P for all X ∈ X .

I Using Ŷ as density, define Q ∈ Q via Föllmer’s construction.
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EP [Xτn/χn] = EP [ynXτn ] ≤ 1 (with yn := 1/χn) for all
n ∈ N. In effect, χn is the expected-log-optimal element.

I By consistency (myopic property of log-optimality) and
regularisation, one constructs a process Ŷ with Ŷ0 = 1,
{Ŷ > 0} = [[0, ζ[[, with the property that Ŷ X is a
supermartingale under P for all X ∈ X .

I Using Ŷ as density, define Q ∈ Q via Föllmer’s construction.
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{Ŷ > 0} = [[0, ζ[[, with the property that Ŷ X is a
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Semimartingales and the numéraire portfolio

Below, we assume NA1 and use notation of proof from last slide.

Prior-to-ζ semimartingales: In particular, the previous argument
shows that X ∈ S[[0,ζ[[(P) whenever ζ is foretellable under P.

Enlargement of the wealth process set: define X as the closure
in the (local) semimartingale topology on S[[0,ζ[[(P).

I topology invariant under prior-to-ζ equivalent probability
changes, when ζ is foretellable under the probabilities involved.

I X is also a wealth-process set according to present definition.
Furthermore, condition NA1 is still valid for X .

The numéraire portfolio: X̂ :=
(
1/Ŷ

)
I[[0,ζ[[ ∈ X has the

property that (X/X̂ )I[[0,ζ[[ is a P-supermartingale for all X ∈ X .
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Super-hedging duality

Super-hedging duality. Assume that NA1 holds; equivalently,
that Q 6= ∅. Then, for all V ∈ O+ and T ∈ T :

p(V ,T ) = sup
Q∈Q

EQ[VT ; T < ζ].

Case of not “nice” probabilistic structure? Above theory still
works, with Q replaced by the class prior-to-ζ strictly positive
supermartingale deflators Y; to wit,

NA1 ⇐⇒ Y 6= ∅.

Furthermore, under condition NA1,

p(V ,T ) = sup
Y∈Y

EP[YTVT ; T < ζ].
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Utility maximisation

The problem. Assume NA1, fix T ∈ T with P [T < ζ] = 1. Let:

uT (x) = sup
X∈xX

EP [U(XT )] , uT (x) = sup
X∈xX

EP [U(XT )] .

Duality. With V (y) = supx>0 (U(x)− xy) for y ∈ R+, define

v(y) = sup
Q∈Q

EP
[
V
(
y(dQ/dP)|FT

)]
, ∀y ∈ (0,∞).

Then, in fact, v(y) = supx>0 (u(x)− xy), for all y > 0.

Theorem [Kramkov & Schachermayer, ’99, ’01]. Assume that
v(y) <∞ for all y > 0. Then:

1. u = u.

2. For all x > 0, ∃X ≡ X (x) ∈ xX with EP[U(XT )] = u(x).

3. For all x > 0, there exists an xX -valued sequence (X n)n∈N
such that S-limn→∞ X n = X and limn→∞ EP[U(X n

T )] = u(x).



Utility maximisation

The problem. Assume NA1, fix T ∈ T with P [T < ζ] = 1. Let:

uT (x) = sup
X∈xX

EP [U(XT )] , uT (x) = sup
X∈xX

EP [U(XT )] .

Duality. With V (y) = supx>0 (U(x)− xy) for y ∈ R+, define

v(y) = sup
Q∈Q

EP
[
V
(
y(dQ/dP)|FT

)]
, ∀y ∈ (0,∞).

Then, in fact, v(y) = supx>0 (u(x)− xy), for all y > 0.

Theorem [Kramkov & Schachermayer, ’99, ’01]. Assume that
v(y) <∞ for all y > 0. Then:

1. u = u.

2. For all x > 0, ∃X ≡ X (x) ∈ xX with EP[U(XT )] = u(x).

3. For all x > 0, there exists an xX -valued sequence (X n)n∈N
such that S-limn→∞ X n = X and limn→∞ EP[U(X n

T )] = u(x).



Utility maximisation

The problem. Assume NA1, fix T ∈ T with P [T < ζ] = 1. Let:

uT (x) = sup
X∈xX

EP [U(XT )] , uT (x) = sup
X∈xX

EP [U(XT )] .

Duality. With V (y) = supx>0 (U(x)− xy) for y ∈ R+, define

v(y) = sup
Q∈Q

EP
[
V
(
y(dQ/dP)|FT

)]
, ∀y ∈ (0,∞).

Then, in fact, v(y) = supx>0 (u(x)− xy), for all y > 0.

Theorem [Kramkov & Schachermayer, ’99, ’01]. Assume that
v(y) <∞ for all y > 0. Then:

1. u = u.

2. For all x > 0, ∃X ≡ X (x) ∈ xX with EP[U(XT )] = u(x).

3. For all x > 0, there exists an xX -valued sequence (X n)n∈N
such that S-limn→∞ X n = X and limn→∞ EP[U(X n

T )] = u(x).



Outline

Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models



NA1 for models based on Itô-processes

Claim: In classical theory, existence of the numéraire portfolio
(therefore, NA1) can be directly validated from the model.

Example: Dynamics dS i
t/S i

t = aitdt +
∑m

j=1 σ
ij
t dW j

t , i = 1, . . . , d .

Define a = (ai )i∈{1,...,d}, σ = (σij)i∈{1,...,d}, j∈{1,...,m}, c = σσ>.

Theorem. The numéraire portfolio exists if and only if:

1. a = cρ for some d-dimensional predictable ρ. (ρ = c†a.)

2.
∫ T
0

(
ρ>t ctρt

)
dt =

∫ T
0

(
a>t c†t at

)
dt <∞, P-a.s.

Indeed, the following hold:

1. If 1 fails, there are opportunities for completely riskless profit.

2. If 1 holds but 2 fails, following ρ closely enough one can
create arbitrage of the first kind.

If 1 and 2 hold, ρ is the building block for the numéraire portfolio.



NA1 for models based on Itô-processes
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Non-constructibility of FLVR

Elusiveness of free lunch with vanishing risk. On the same
probability space that affords two independent Brownian motions
B and W , consider two single-asset models:

Model ̂ : dŜt/Ŝt = (1/Ŝt)
2dt + (1/Ŝt)dBt ,

Model ˜ : dS̃t/S̃t = (1/Ŝt)
2dt + (1/Ŝt)dWt .

Local drift and volatility are exactly the same in both models.

I Both models satisfy NA1. However. . .

I An ELMM exists for Model ˜ (that is, NFLVR holds), but not
for Model ̂ (that is, NFLVR fails).
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Model uncertainty: work-in-progress

Class of underlying probability measure: P, consisting of
potentially mutually singular probabilities.

Wealth-process set: generated by continuous on [[0, ζ[[ (under all
P ∈ P) d-dimensional S with S = SI[[0,ζ[[.

Super-hedging: for V ∈ O+ and T ∈ T , super-hedging value
p(V ,T ) is defined as the infimum of all x > 0 such that

∃X x ∈ xX with sup
P∈P

P [X x
T < VT , T < ζ] = 0.

NA1: p(V ,T ) = 0 =⇒ P [VT > 0,T < ζ] = 0, ∀P ∈ P.

FTAP: NA1 ⇐⇒ ∀P ∈ P,∃ supermartingale measure Q <ζ∼ P.

Super-hedging duality: . . .
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The End

Thank You!
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