Prior-to-default equivalent supermartingale measures

Constantinos Kardaras London School of Economics

Advanced Finance and Stochastics, Moscow

Monday 24th of June, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Beginnings

Economic idea—qualitative version of the Fundamental Theorem of Asset Pricing (FTAP). In a market without frictions, there is equivalence between the following statements:

- 1. There are no possibilities for free lunch.
- 2. Agents' utility maximisation problems have solutions.
- 3. There exists a linear valuation rule which is *consistent*:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Liquid assets are valued correctly;
- Non-zero claims have non-zero value.

Economic idea—qualitative version of the Fundamental Theorem of Asset Pricing (FTAP). In a market without frictions, there is equivalence between the following statements:

- 1. There are no possibilities for free lunch.
- 2. Agents' utility maximisation problems have solutions.
- 3. There exists a linear valuation rule which is *consistent*:
 - Liquid assets are valued correctly;
 - Non-zero claims have non-zero value.

Questions: How are the previous made precise?

- 1. How should free lunch be defined? (Further, should we always forbid its existence, even if we cannot construct one?)
- 2. How should utility maximisation problems be formulated?
- 3. How do linear consistent valuation rules look like?

Classical theory — brief selected bibliography

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discrete-time models:

- Ross '73.
- ▶ Harrison and Kreps '79.
- Dalang, Morton and Willinger '90.
- Rogers '94.
- Jacod and Shiryaev '98.
- Kabanov and Stricker '01.

Classical theory — brief selected bibliography

Discrete-time models:

- Ross '73.
- ▶ Harrison and Kreps '79.
- Dalang, Morton and Willinger '90.
- Rogers '94.
- Jacod and Shiryaev '98.
- Kabanov and Stricker '01.

Continuous-time models:

- Harrison and Pliska '81.
- ▶ Kreps '81.
- ▶ ...
- Delbaen and Schachermayer loads of work from '91 to '98.

Further steps — in a nutshell

After the '98 D&S FTAP, viability in frictionless models seemed well-understood. However, in the 00's, interest in models that allowed for certain "free lunches" started to form:

Stochastic Portfolio (Optimisation) Theory of R. FERNHOLZ. Aim: discover profits rather than banning the model.

- ► Benchmark approach of E. PLATEN builds a valuation framework using a very special portfolio as numéraire.
- Markets with "bubbles" in asset prices gained popularity.

Further steps — in a nutshell

After the '98 D&S FTAP, viability in frictionless models seemed well-understood. However, in the 00's, interest in models that allowed for certain "free lunches" started to form:

- Stochastic Portfolio (Optimisation) Theory of R. FERNHOLZ. Aim: discover profits rather than banning the model.
- ► Benchmark approach of E. PLATEN builds a valuation framework using a very special portfolio as numéraire.
- Markets with "bubbles" in asset prices gained popularity.

Further research on viability and valuation was carried out, utilising a *descriptive*, rather than *normative* approach.

- Deflators, not risk-neutral probabilities, became important.
- Exact connections to *numéraire portfolios* were established.
- Existence of arbitrage was characterised in terms of *predictable* characteristics of the model, making it easily verifiable.
- ► Valuation ideas were extended, covering "imperfect" markets.

- 1. What about models with infinite number of liquid assets?
 - Bond markets continuous maturities.
 - "Large" financial stock markets at the limit.
 - Markets with traded options continuous maturities, strikes.

- 1. What about models with infinite number of liquid assets?
 - Bond markets continuous maturities.
 - "Large" financial stock markets at the limit.
 - Markets with traded options continuous maturities, strikes.

- 2. Portfolio constraints?
 - Restrictions on *fractions* of investment; for example, no-short-sale constraints.

- 1. What about models with infinite number of liquid assets?
 - Bond markets continuous maturities.
 - "Large" financial stock markets at the limit.
 - Markets with traded options continuous maturities, strikes.

- 2. Portfolio constraints?
 - Restrictions on *fractions* of investment; for example, no-short-sale constraints.
- 3. Possibility of default for the whole economy?

- 1. What about models with infinite number of liquid assets?
 - Bond markets continuous maturities.
 - "Large" financial stock markets at the limit.
 - Markets with traded options continuous maturities, strikes.
- 2. Portfolio constraints?
 - Restrictions on *fractions* of investment; for example, no-short-sale constraints.
- 3. Possibility of default for the whole economy?
- 4. Model uncertainty?
 - Slew of (potentially mutually singular) underlying probabilities.

Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stochastic framework

State space E (Polish), denoting possible states in economy.

- Append cemetery state \triangle to E.
- For right-continuous $\omega : \mathbb{R}_+ \mapsto E \cup \{ \triangle \}$, define

$$\zeta(\omega) := \inf \{t \in \mathbb{R}_+ \mid \omega_t = \Delta\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

to be the economy's *default* time (or *life*time).

Stochastic framework

State space *E* (Polish), denoting possible states in economy.

- ► Append cemetery state △ to E.
- For right-continuous $\omega : \mathbb{R}_+ \mapsto E \cup \{ \triangle \}$, define

$$\zeta(\omega) := \inf \{t \in \mathbb{R}_+ \mid \omega_t = \Delta\}.$$

to be the economy's *default* time (or *life*time).

Underlying stochastic basis: (Ω, \mathbf{F}) , where

 Ω: set of all right-continuous ω : ℝ₊ → E ∪ {Δ} such that ω₀ ∈ E and ω_t = Δ holds for all t ∈ [ζ(ω),∞).

▶ **F**: right-continuous enlargement of natural filtration of ω . Note that **F** is *not* assumed complete, and that $\mathcal{F}_{\zeta-} = \mathcal{F}_{\infty}(=: \mathcal{F})$.

Stochastic framework

State space *E* (Polish), denoting possible states in economy.

- Append cemetery state \triangle to E.
- For right-continuous $\omega : \mathbb{R}_+ \mapsto E \cup \{ \triangle \}$, define

$$\zeta(\omega) := \inf \{t \in \mathbb{R}_+ \mid \omega_t = \Delta\}.$$

to be the economy's *default* time (or *life*time).

Underlying stochastic basis: (Ω, \mathbf{F}) , where

• Ω : set of all right-continuous $\omega : \mathbb{R}_+ \mapsto E \cup \{\Delta\}$ such that $\omega_0 \in E$ and $\omega_t = \Delta$ holds for all $t \in [\zeta(\omega), \infty)$.

▶ **F**: right-continuous enlargement of natural filtration of ω . Note that **F** is *not* assumed complete, and that $\mathcal{F}_{\zeta-} = \mathcal{F}_{\infty}(=: \mathcal{F})$.

Notation: \mathcal{O} : optional processes, \mathcal{T} : stopping times.

Prior-to- ζ equivalent probability measures

Definition: Two probabilities \mathbb{P} and $\widetilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are called *prior-to-* ζ *equivalent*, denoted by $\widetilde{\mathbb{P}} \stackrel{\leq \zeta}{\sim} \mathbb{P}$, if

 $\widetilde{\mathbb{P}}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = 0 \quad \Longleftrightarrow \quad \mathbb{P}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = 0$

holds for all $T \in T$ and $A_T \in F_T$.

strictly weaker notion than "local" equivalence.

Prior-to- ζ equivalent probability measures

Definition: Two probabilities \mathbb{P} and $\widetilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are called *prior-to-* ζ *equivalent*, denoted by $\widetilde{\mathbb{P}} \stackrel{\leq \zeta}{\sim} \mathbb{P}$, if

 $\widetilde{\mathbb{P}}[A_T \cap \{T < \zeta\}] = 0 \quad \Longleftrightarrow \quad \mathbb{P}[A_T \cap \{T < \zeta\}] = 0$

holds for all $T \in \mathcal{T}$ and $A_T \in \mathcal{F}_T$.

strictly weaker notion than "local" equivalence.

Proposition. $\widetilde{\mathbb{P}} \stackrel{\leq \zeta}{\sim} \mathbb{P} \iff \exists \mathbb{P}$ -supermartingale Y with $Y_0 = 1$, $\llbracket 0, \zeta \llbracket \subseteq \{Y > 0\}$ (up to \mathbb{P} -evanescence), such that

 $\widetilde{\mathbb{P}}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = \mathbb{E}_{\mathbb{P}}\left[Y_{\mathcal{T}}; A_{\mathcal{T}} \cap \{T < \zeta\}\right]$ (DENS)

holds for all $T \in \mathcal{T}$ and $A_T \in \mathcal{F}_T$.

Prior-to- ζ equivalent probability measures

Definition: Two probabilities \mathbb{P} and $\widetilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are called *prior-to-* ζ *equivalent*, denoted by $\widetilde{\mathbb{P}} \stackrel{\leq \zeta}{\sim} \mathbb{P}$, if

 $\widetilde{\mathbb{P}}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = 0 \quad \Longleftrightarrow \quad \mathbb{P}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = 0$

holds for all $T \in \mathcal{T}$ and $A_T \in \mathcal{F}_T$.

strictly weaker notion than "local" equivalence.

Proposition. $\widetilde{\mathbb{P}} \stackrel{\leq \zeta}{\sim} \mathbb{P} \iff \exists \mathbb{P}$ -supermartingale Y with $Y_0 = 1$, $\llbracket 0, \zeta \llbracket \subseteq \{Y > 0\}$ (up to \mathbb{P} -evanescence), such that

 $\widetilde{\mathbb{P}}\left[A_{\mathcal{T}} \cap \{T < \zeta\}\right] = \mathbb{E}_{\mathbb{P}}\left[Y_{\mathcal{T}}; A_{\mathcal{T}} \cap \{T < \zeta\}\right]$ (DENS)

holds for all $T \in \mathcal{T}$ and $A_T \in \mathcal{F}_T$.

Theorem [Föllmer '72]. For a \mathbb{P} -supermartingale Y with $Y_0 = 1$, $\llbracket 0, \zeta \llbracket \subseteq \{Y > 0\}$, there exists (!) $\widetilde{\mathbb{P}}$ such that (DENS) holds.

Definition: Say that ζ is foretellable under \mathbb{P} if there exists a *nondecreasing* sequence $(\tau_n)_{n \in \mathbb{N}}$ of stopping times such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ $au_n \leq \zeta$ and $\mathbb{P}[au_n < \zeta] = 1$ holds for all $n \in \mathbb{N}$, and

$$\blacktriangleright \mathbb{P}\left[\lim_{n\to\infty}\tau_n=\zeta\right]=1.$$

Definition: Say that ζ is foretellable under \mathbb{P} if there exists a *nondecreasing* sequence $(\tau_n)_{n \in \mathbb{N}}$ of stopping times such that:

• $au_n \leq \zeta$ and $\mathbb{P}\left[au_n < \zeta\right] = 1$ holds for all $n \in \mathbb{N}$, and

$$\blacktriangleright \mathbb{P}\left[\lim_{n\to\infty}\tau_n=\zeta\right]=1.$$

Theorem: For any probability $\overline{\mathbb{P}}$ on (Ω, \mathcal{F}) , there exists $\mathbb{P} \stackrel{\langle \zeta}{\sim} \overline{\mathbb{P}}$ with the property that ζ is foretellable under \mathbb{P} .

Definition: Say that ζ is foretellable under \mathbb{P} if there exists a *nondecreasing* sequence $(\tau_n)_{n \in \mathbb{N}}$ of stopping times such that:

• $au_n \leq \zeta$ and $\mathbb{P}\left[au_n < \zeta\right] = 1$ holds for all $n \in \mathbb{N}$, and

$$\blacktriangleright \mathbb{P}\left[\lim_{n\to\infty}\tau_n=\zeta\right]=1.$$

Theorem: For any probability $\overline{\mathbb{P}}$ on (Ω, \mathcal{F}) , there exists $\mathbb{P} \stackrel{\langle \zeta}{\sim} \overline{\mathbb{P}}$ with the property that ζ is foretellable under \mathbb{P} .

▶ P is constructed in a (maximal) way so that the "density" process (dP/dP)|_F is non-increasing.

This result allows use of localising techniques later on.

Wealth processes: the guiding example

Liquid assets: $S \equiv (S^i)_{i \in I}$, where *I* is an *arbitrary* index set.

- ▶ S^i right-continuous and $S^i = S^i \mathbb{I}_{[0,\zeta]}$ holds for all $i \in I$.
- All assets and wealth denominated in units of $S^0 \equiv \mathbb{I}_{[0,\zeta]}$.

Wealth processes: the guiding example

Liquid assets: $S \equiv (S^i)_{i \in I}$, where *I* is an *arbitrary* index set.

- ▶ S^i right-continuous and $S^i = S^i \mathbb{I}_{[0,\zeta]}$ holds for all $i \in I$.
- All assets and wealth denominated in units of $S^0 \equiv \mathbb{I}_{[0,\zeta]}$.

Wealth process-set \mathcal{X} with (normalised) unit initial capital : all *nonnegative* processes of the form

$$X = \left(1 + \int_0^\cdot H_t \mathrm{d}S_t\right) \mathbb{I}_{\llbracket 0, \zeta
bracket},$$

where H predictable, R^{I} -valued, whenever integral is well-defined:

- always for H being simple (buy-and-hold, finite holdings);
- ▶ if *I* is finite and *S* semimartingale, for all *S*-integrable *H*.

Wealth processes: the guiding example

Liquid assets: $S \equiv (S^i)_{i \in I}$, where *I* is an *arbitrary* index set.

- ▶ S^i right-continuous and $S^i = S^i \mathbb{I}_{[0,\zeta]}$ holds for all $i \in I$.
- All assets and wealth denominated in units of $S^0 \equiv \mathbb{I}_{[0,\zeta]}$.

Wealth process-set \mathcal{X} with (normalised) unit initial capital : all *nonnegative* processes of the form

$$X = \left(1 + \int_0^{\cdot} H_t \mathrm{d}S_t\right) \mathbb{I}_{\llbracket 0, \zeta \llbracket},$$

where H predictable, R'-valued, whenever integral is well-defined:

- always for H being simple (buy-and-hold, finite holdings);
- ▶ if *I* is finite and *S* semimartingale, for all *S*-integrable *H*.

Constraints: ask that $(H^i S_{-}^i)_{i \in I} \in X_{-}C$, where C is a predictable process with values in convex subsets of R^I such that $0 \in C$.

Wealth-process set. The class \mathcal{X} of wealth processes starting from normalized unit capital is such that:

1. Each $X \in \mathcal{X}$ is a nonnegative, adapted, right-continuous with $X_0 = 1$, as well as $X = X \mathbb{I}_{[0,\zeta]}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wealth-process set. The class \mathcal{X} of wealth processes starting from normalized unit capital is such that:

1. Each $X \in \mathcal{X}$ is a nonnegative, adapted, right-continuous with $X_0 = 1$, as well as $X = X \mathbb{I}_{[0,\zeta[}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. $\mathbb{I}_{[0,\zeta[} \in \mathcal{X}.$

Wealth-process set. The class \mathcal{X} of wealth processes starting from normalized unit capital is such that:

- 1. Each $X \in \mathcal{X}$ is a nonnegative, adapted, right-continuous with $X_0 = 1$, as well as $X = X \mathbb{I}_{[0,\zeta[}$.
- 2. $\mathbb{I}_{[0,\zeta[} \in \mathcal{X}.$
- 3. \mathcal{X} is fork-convex: $\forall \tau \in \mathbb{R}_+, X \in \mathcal{X}, \forall X' \in \mathcal{X}, X'' \in \mathcal{X}$ with [[$0, \zeta$ [[$\subseteq \{X' > 0, X'' > 0\}$, and \forall [0, 1]-valued \mathcal{F}_{τ} -measurable α_{τ} , the process defined below is also an element of \mathcal{X} :

$$t \mapsto \begin{cases} X_t, & \text{if } 0 \leq t < \zeta \land \tau, \\ \alpha_\tau \left(X_\tau / X_\tau' \right) X_t' + (1 - \alpha_\tau) \left(X_\tau / X_\tau'' \right) X_t'', & \text{if } \zeta \land \tau \leq t < \zeta, \\ 0, & \text{if } \zeta \leq t, \end{cases}$$

Super-hedging

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, define

 $\overline{p}(V,T) := \inf \left\{ x > 0 \mid \exists X^x \in x \mathcal{X} \text{ with } \mathbb{P}\left[X^x_T < V_T, \ T < \zeta \right] = 0 \right\},$

where $\overline{p}(V, T) = \infty$ when the last set is empty.

Super-hedging

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, define

 $\overline{p}(V,T) := \inf \left\{ x > 0 \mid \exists X^x \in x\mathcal{X} \text{ with } \mathbb{P}\left[X^x_T < V_T, \ T < \zeta \right] = 0 \right\},$

where $\overline{p}(V, T) = \infty$ when the last set is empty.

Approximate super-hedging: replace the qualifier " $\exists X^x \in x\mathcal{X}$ with $\mathbb{P}[X^x_T < V_T, T < \zeta]$ " above with

 $\forall \epsilon > 0, \ \exists X^{x,\epsilon} \in x\mathcal{X} \text{ with } \mathbb{P}\left[X_T^{x,\epsilon} < V_T, \ T < \zeta\right] < \epsilon.$

Super-hedging

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, define

 $\overline{p}(V,T) := \inf \left\{ x > 0 \mid \exists X^x \in x \mathcal{X} \text{ with } \mathbb{P}\left[X^x_T < V_T, \ T < \zeta \right] = 0 \right\},$

where $\overline{p}(V, T) = \infty$ when the last set is empty.

Approximate super-hedging: replace the qualifier " $\exists X^x \in x\mathcal{X}$ with $\mathbb{P}[X^x_T < V_T, T < \zeta]$ " above with

$$\forall \epsilon > 0, \ \exists X^{x,\epsilon} \in x\mathcal{X} \text{ with } \mathbb{P}\left[X_{T}^{x,\epsilon} < V_{T}, \ T < \zeta\right] < \epsilon.$$

Remarks:

- Both quantities are invariant under prior-to-ζ equivalent probability changes.
- Clearly, $p \leq \overline{p}$.
- ► For X without "closedness" properties, p is more appropriate (for example, it is continuous from below).

$$\overline{p}(V, T) = 0$$
 and $\mathbb{P}[V_T > 0, T < \zeta] > 0.$

If *no* opportunities for such arbitrage exist, say that NA_1 holds.

$$\overline{p}(V, T) = 0$$
 and $\mathbb{P}[V_T > 0, T < \zeta] > 0.$

If *no* opportunities for such arbitrage exist, say that NA_1 holds.

▶ NA₁ invariant under prior-to- ζ equivalent probability changes.

$$\overline{p}(V,T) = 0$$
 and $\mathbb{P}[V_T > 0, T < \zeta] > 0.$

If *no* opportunities for such arbitrage exist, say that NA_1 holds.

- ▶ NA₁ invariant under prior-to- ζ equivalent probability changes.
- Appellation follows Kabanov and Kramkov from their theory of large financial markets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\overline{p}(V, T) = 0$$
 and $\mathbb{P}[V_T > 0, T < \zeta] > 0.$

If *no* opportunities for such arbitrage exist, say that NA_1 holds.

- ▶ NA₁ invariant under prior-to- ζ equivalent probability changes.
- Appellation follows Kabanov and Kramkov from their theory of large financial markets.
- In classical theory, it is weaker than the NFLVR condition of Delbaen and Schachermayer. It is equivalent to Kabanov's BK condition and Kar(atz+dar)as' NUPBR condition.

$$\overline{p}(V, T) = 0$$
 and $\mathbb{P}[V_T > 0, T < \zeta] > 0.$

If *no* opportunities for such arbitrage exist, say that NA_1 holds.

- ▶ NA₁ invariant under prior-to- ζ equivalent probability changes.
- Appellation follows Kabanov and Kramkov from their theory of large financial markets.
- In classical theory, it is weaker than the NFLVR condition of Delbaen and Schachermayer. It is equivalent to Kabanov's BK condition and Kar(atz+dar)as' NUPBR condition.
- ► NA₁ is a numéraire-invariant notion.

Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\blacktriangleright \mathbb{Q} \stackrel{<\zeta}{\sim} \mathbb{P};$
- X is a (nonnegative) supermartingale for all $X \in \mathcal{X}$.
- $\mathcal{Q}:$ class of all prior-to- ζ equivalent supermartingale measures.

- $\blacktriangleright \mathbb{Q} \stackrel{<\zeta}{\sim} \mathbb{P};$
- X is a (nonnegative) supermartingale for all $X \in \mathcal{X}$.
- $\mathcal{Q}:$ class of all prior-to- ζ equivalent supermartingale measures.

Theorem [FTAP]. In the previous setting,

$$\mathsf{NA}_1 \iff \mathcal{Q} \neq \emptyset.$$

- $\blacktriangleright \mathbb{Q} \stackrel{<\zeta}{\sim} \mathbb{P};$
- X is a (nonnegative) supermartingale for all $X \in \mathcal{X}$.
- $\mathcal{Q}:$ class of all prior-to- ζ equivalent supermartingale measures.

Theorem [FTAP]. In the previous setting,

$$\mathsf{NA}_1 \iff \mathcal{Q} \neq \emptyset.$$

Proof. \Leftarrow is (almost) trivial. Implication \Longrightarrow in next slide.

- $\blacktriangleright \mathbb{Q} \stackrel{<\zeta}{\sim} \mathbb{P};$
- X is a (nonnegative) supermartingale for all $X \in \mathcal{X}$.
- $\mathcal{Q}:$ class of all prior-to- ζ equivalent supermartingale measures.

Theorem [FTAP]. In the previous setting,

$$\mathsf{NA}_1 \iff \mathcal{Q} \neq \emptyset.$$

Proof. \Leftarrow is (almost) trivial. Implication \Longrightarrow in next slide.

Remark: No hope for local martingales in this framework. However, if \mathcal{X} is generated by finite-dimensional S without constraints, then NA₁ $\iff \exists$ prior-to- ζ ELMM.

• Assume w.l.o.g. that $(\tau_n)_{n \in \mathbb{N}}$ foretells ζ under \mathbb{P} .

• Assume w.l.o.g. that $(\tau_n)_{n \in \mathbb{N}}$ foretells ζ under \mathbb{P} .

• For each $n \in \mathbb{N}$, there exists $\chi_n \in \overline{\{X_{\tau_n} \mid X \in \mathcal{X}\}}^{\mathbb{L}^0}$ such that $\mathbb{E}_{\mathbb{P}}[X_{\tau_n}/\chi_n] = \mathbb{E}_{\mathbb{P}}[y_n X_{\tau_n}] \leq 1$ (with $y_n := 1/\chi_n$) for all $n \in \mathbb{N}$. In effect, χ_n is the expected-log-optimal element.

- Assume w.l.o.g. that $(\tau_n)_{n \in \mathbb{N}}$ foretells ζ under \mathbb{P} .
- ▶ For each $n \in \mathbb{N}$, there exists $\chi_n \in \overline{\{X_{\tau_n} \mid X \in \mathcal{X}\}}^{\mathbb{L}^0}$ such that $\mathbb{E}_{\mathbb{P}}[X_{\tau_n}/\chi_n] = \mathbb{E}_{\mathbb{P}}[y_n X_{\tau_n}] \leq 1$ (with $y_n := 1/\chi_n$) for all $n \in \mathbb{N}$. In effect, χ_n is the expected-log-optimal element.

▶ By consistency (myopic property of log-optimality) and regularisation, one constructs a process \widehat{Y} with $\widehat{Y}_0 = 1$, $\{\widehat{Y} > 0\} = \llbracket 0, \zeta \llbracket$, with the property that $\widehat{Y}X$ is a supermartingale under \mathbb{P} for all $X \in \mathcal{X}$.

- Assume w.l.o.g. that $(\tau_n)_{n \in \mathbb{N}}$ foretells ζ under \mathbb{P} .
- ▶ For each $n \in \mathbb{N}$, there exists $\chi_n \in \overline{\{X_{\tau_n} \mid X \in \mathcal{X}\}}^{\mathbb{L}^0}$ such that $\mathbb{E}_{\mathbb{P}}[X_{\tau_n}/\chi_n] = \mathbb{E}_{\mathbb{P}}[y_n X_{\tau_n}] \leq 1$ (with $y_n := 1/\chi_n$) for all $n \in \mathbb{N}$. In effect, χ_n is the expected-log-optimal element.
- ▶ By consistency (myopic property of log-optimality) and regularisation, one constructs a process \hat{Y} with $\hat{Y}_0 = 1$, $\{\hat{Y} > 0\} = [[0, \zeta[[, with the property that <math>\hat{Y}X$ is a supermartingale under \mathbb{P} for all $X \in \mathcal{X}$.
- Using \widehat{Y} as density, define $\mathbb{Q} \in \mathcal{Q}$ via Föllmer's construction.

Semimartingales and the numéraire portfolio

Below, we assume NA_1 and use notation of proof from last slide.

Prior-to- ζ semimartingales: In particular, the previous argument shows that $X \in S_{IO,\zeta I}(\mathbb{P})$ whenever ζ is foretellable under \mathbb{P} .

Below, we assume NA_1 and use notation of proof from last slide.

Prior-to- ζ semimartingales: In particular, the previous argument shows that $X \in S_{IO,\zeta I}(\mathbb{P})$ whenever ζ is foretellable under \mathbb{P} .

Enlargement of the wealth process set: define $\overline{\mathcal{X}}$ as the closure in the (local) semimartingale topology on $\mathcal{S}_{[0,\zeta]}(\mathbb{P})$.

- topology invariant under prior-to-ζ equivalent probability changes, when ζ is foretellable under the probabilities involved.
- ▶ $\overline{\mathcal{X}}$ is also a wealth-process set according to present definition. Furthermore, condition NA₁ is still valid for $\overline{\mathcal{X}}$.

Below, we assume NA_1 and use notation of proof from last slide.

Prior-to- ζ semimartingales: In particular, the previous argument shows that $X \in S_{IO,\zeta I}(\mathbb{P})$ whenever ζ is foretellable under \mathbb{P} .

Enlargement of the wealth process set: define $\overline{\mathcal{X}}$ as the closure in the (local) semimartingale topology on $\mathcal{S}_{[0,\zeta]}(\mathbb{P})$.

- topology invariant under prior-to-ζ equivalent probability changes, when ζ is foretellable under the probabilities involved.
- ▶ $\overline{\mathcal{X}}$ is also a wealth-process set according to present definition. Furthermore, condition NA₁ is still valid for $\overline{\mathcal{X}}$.

The numéraire portfolio: $\widehat{X} := (1/\widehat{Y})\mathbb{I}_{[0,\zeta[]} \in \overline{\mathcal{X}}$ has the property that $(X/\widehat{X})\mathbb{I}_{[0,\zeta[]}$ is a \mathbb{P} -supermartingale for all $X \in \overline{\mathcal{X}}$.

Super-hedging duality

Super-hedging duality. Assume that NA₁ holds; equivalently, that $Q \neq \emptyset$. Then, for all $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$:

$$p(V, T) = \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{\mathbb{Q}}[V_T; T < \zeta].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Super-hedging duality. Assume that NA₁ holds; equivalently, that $Q \neq \emptyset$. Then, for all $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$:

$$p(V, T) = \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{\mathbb{Q}}[V_T; T < \zeta].$$

Case of not "nice" probabilistic structure? Above theory still works, with Q replaced by the class *prior-to-\zeta strictly positive supermartingale deflators* \mathcal{Y} ; to wit,

$$\mathsf{NA}_1 \iff \mathcal{Y} \neq \emptyset.$$

Furthermore, under condition NA₁,

$$p(V, T) = \sup_{Y \in \mathcal{Y}} \mathbb{E}_{\mathbb{P}}[Y_T V_T; T < \zeta].$$

Utility maximisation

The problem. Assume NA₁, fix $T \in \mathcal{T}$ with $\mathbb{P}[T < \zeta] = 1$. Let:

$$u_{\mathcal{T}}(x) = \sup_{X \in x\mathcal{X}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right], \quad \overline{u}_{\mathcal{T}}(x) = \sup_{X \in x\overline{\mathcal{X}}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right].$$

Utility maximisation

The problem. Assume NA₁, fix $T \in \mathcal{T}$ with $\mathbb{P}[T < \zeta] = 1$. Let:

$$u_{\mathcal{T}}(x) = \sup_{X \in x\mathcal{X}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right], \quad \overline{u}_{\mathcal{T}}(x) = \sup_{X \in x\overline{\mathcal{X}}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right].$$

Duality. With $V(y) = \sup_{x>0} (U(x) - xy)$ for $y \in \mathbb{R}_+$, define

$$v(y) = \sup_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_{\mathbb{P}} [V(y(\mathrm{d}\mathbb{Q}/\mathrm{d}\mathbb{P})|_{\mathcal{F}_{\mathcal{T}}})], \quad \forall y \in (0,\infty).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then, in fact, $v(y) = \sup_{x>0} (u(x) - xy)$, for all y > 0.

Utility maximisation

The problem. Assume NA₁, fix $T \in T$ with $\mathbb{P}[T < \zeta] = 1$. Let:

$$u_{\mathcal{T}}(x) = \sup_{X \in x\mathcal{X}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right], \quad \overline{u}_{\mathcal{T}}(x) = \sup_{X \in x\overline{\mathcal{X}}} \mathbb{E}_{\mathbb{P}}\left[U(X_{\mathcal{T}})\right].$$

Duality. With $V(y) = \sup_{x>0} (U(x) - xy)$ for $y \in \mathbb{R}_+$, define

$$\mathbf{v}(y) = \sup_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_{\mathbb{P}} \big[V \big(y(\mathrm{d}\mathbb{Q}/\mathrm{d}\mathbb{P})|_{\mathcal{F}_{\mathcal{T}}} \big) \big], \quad \forall y \in (0,\infty).$$

Then, in fact, $v(y) = \sup_{x>0} (u(x) - xy)$, for all y > 0.

Theorem [Kramkov & Schachermayer, '99, '01]. Assume that $v(y) < \infty$ for all y > 0. Then:

1. $u = \overline{u}$.

2. For all x > 0, $\exists \overline{X} \equiv \overline{X}(x) \in x\overline{\mathcal{X}}$ with $\mathbb{E}_{\mathbb{P}}[U(\overline{X}_{\mathcal{T}})] = u(x)$.

3. For all x > 0, there exists an $x\mathcal{X}$ -valued sequence $(X^n)_{n \in \mathbb{N}}$ such that \mathcal{S} -lim_{$n \to \infty$} $X^n = \overline{X}$ and lim_{$n \to \infty$} $\mathbb{E}_{\mathbb{P}}[U(X^n_T)] = u(x)$. Introduction and discussion

Probabilistic and financial set-up

Main results

More on continuous-path models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

NA1 for models based on Itô-processes

Claim: In classical theory, existence of the numéraire portfolio (therefore, NA_1) can be directly validated from the model.

NA₁ for models based on Itô-processes

Claim: In classical theory, existence of the numéraire portfolio (therefore, NA_1) can be directly validated from the model.

Example: Dynamics $dS_t^i/S_t^i = a_t^i dt + \sum_{j=1}^m \sigma_t^{ij} dW_t^j$, i = 1, ..., d. Define $a = (a^i)_{i \in \{1,...,d\}}$, $\sigma = (\sigma^{ij})_{i \in \{1,...,d\}}$, $c = \sigma \sigma^\top$.

NA₁ for models based on Itô-processes

Claim: In classical theory, existence of the numéraire portfolio (therefore, NA_1) can be directly validated from the model.

Example: Dynamics $\mathrm{d}S_t^i/S_t^i = a_t^i\mathrm{d}t + \sum_{j=1}^m \sigma_t^{ij}\mathrm{d}W_t^j$, $i = 1, \dots, d$. Define $a = (a^i)_{i \in \{1,\dots,d\}}$, $\sigma = (\sigma^{ij})_{i \in \{1,\dots,d\}, j \in \{1,\dots,m\}}$, $c = \sigma\sigma^\top$.

Theorem. The numéraire portfolio exists if and only if:

1. $a = c\rho$ for some *d*-dimensional predictable ρ . ($\rho = c^{\dagger}a$.) 2. $\int_{0}^{T} \left(\rho_{t}^{\top}c_{t}\rho_{t}\right) \mathrm{d}t = \int_{0}^{T} \left(a_{t}^{\top}c_{t}^{\dagger}a_{t}\right) \mathrm{d}t < \infty$, \mathbb{P} -a.s.

NA1 for models based on Itô-processes

Claim: In classical theory, existence of the numéraire portfolio (therefore, NA_1) can be directly validated from the model.

Example: Dynamics $\mathrm{d}S_t^i/S_t^i = a_t^i\mathrm{d}t + \sum_{j=1}^m \sigma_t^{ij}\mathrm{d}W_t^j$, $i = 1, \dots, d$. Define $a = (a^i)_{i \in \{1,\dots,d\}}$, $\sigma = (\sigma^{ij})_{i \in \{1,\dots,d\}, j \in \{1,\dots,m\}}$, $c = \sigma\sigma^\top$.

Theorem. The numéraire portfolio exists if and only if:

1. $a = c\rho$ for some *d*-dimensional predictable ρ . ($\rho = c^{\dagger}a$.) 2. $\int_{0}^{T} (\rho_{t}^{\top}c_{t}\rho_{t}) dt = \int_{0}^{T} (a_{t}^{\top}c_{t}^{\dagger}a_{t}) dt < \infty$, \mathbb{P} -a.s.

Indeed, the following hold:

- 1. If 1 fails, there are opportunities for *completely riskless profit*.
- 2. If 1 holds but 2 fails, following ρ closely enough one can create arbitrage of the first kind.

If 1 and 2 hold, ρ is the building block for the numéraire portfolio.

Elusiveness of free lunch with vanishing risk. On the same probability space that affords two independent Brownian motions B and W, consider two single-asset models:

$$\begin{array}{lll} \text{Model} & \widehat{}: & \mathrm{d}\widehat{S}_t/\widehat{S}_t & = & (1/\widehat{S}_t)^2 \mathrm{d}t + (1/\widehat{S}_t) \mathrm{d}B_t, \\ \text{Model} & \widehat{}: & \mathrm{d}\widetilde{S}_t/\widetilde{S}_t & = & (1/\widehat{S}_t)^2 \mathrm{d}t + (1/\widehat{S}_t) \mathrm{d}W_t. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Elusiveness of free lunch with vanishing risk. On the same probability space that affords two independent Brownian motions B and W, consider two single-asset models:

$$\begin{array}{lll} \text{Model} & \widehat{}: & \mathrm{d}\widehat{S}_t/\widehat{S}_t & = & (1/\widehat{S}_t)^2 \mathrm{d}t + (1/\widehat{S}_t) \mathrm{d}B_t, \\ \text{Model} & \widetilde{}: & \mathrm{d}\widetilde{S}_t/\widetilde{S}_t & = & (1/\widehat{S}_t)^2 \mathrm{d}t + (1/\widehat{S}_t) \mathrm{d}W_t. \end{array}$$

Local drift and volatility are *exactly* the same in both models.

- Both models satisfy NA₁. However...
- An ELMM exists for Model ~ (that is, NFLVR holds), but not for Model ^ (that is, NFLVR fails).

Class of underlying probability measure: \mathcal{P} , consisting of potentially mutually singular probabilities.

Class of underlying probability measure: \mathcal{P} , consisting of potentially mutually singular probabilities.

Wealth-process set: generated by continuous on $[0, \zeta]$ (under all $\mathbb{P} \in \mathcal{P}$) *d*-dimensional *S* with $S = S\mathbb{I}_{[0,\zeta]}$.

Class of underlying probability measure: \mathcal{P} , consisting of potentially mutually singular probabilities.

Wealth-process set: generated by continuous on $[0, \zeta]$ (under all $\mathbb{P} \in \mathcal{P}$) *d*-dimensional *S* with $S = S\mathbb{I}_{[0,\zeta]}$.

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, super-hedging value $\overline{p}(V, T)$ is defined as the infimum of all x > 0 such that

$$\exists X^{x} \in x\mathcal{X} \text{ with } \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left[X_{T}^{x} < V_{T}, \ T < \zeta\right] = 0.$$

 $\mathbf{NA}_1: \ \overline{p}(V,T) = 0 \implies \mathbb{P}[V_T > 0, T < \zeta] = 0, \ \forall \mathbb{P} \in \mathcal{P}.$

Class of underlying probability measure: \mathcal{P} , consisting of potentially mutually singular probabilities.

Wealth-process set: generated by continuous on $[0, \zeta]$ (under all $\mathbb{P} \in \mathcal{P}$) *d*-dimensional *S* with $S = S\mathbb{I}_{[0,\zeta]}$.

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, super-hedging value $\overline{p}(V, T)$ is defined as the infimum of all x > 0 such that

$$\exists X^{x} \in x\mathcal{X} \text{ with } \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left[X_{T}^{x} < V_{T}, \ T < \zeta\right] = 0.$$

 $\mathsf{NA}_1: \ \overline{p}(V,T) = 0 \implies \mathbb{P}[V_T > 0, T < \zeta] = 0, \ \forall \mathbb{P} \in \mathcal{P}.$

FTAP: $\mathsf{NA}_1 \iff \forall \mathbb{P} \in \mathcal{P}, \exists \text{ supermartingale measure } \mathbb{Q} \stackrel{\leq \zeta}{\sim} \mathbb{P}.$

Class of underlying probability measure: \mathcal{P} , consisting of potentially mutually singular probabilities.

Wealth-process set: generated by continuous on $[0, \zeta]$ (under all $\mathbb{P} \in \mathcal{P}$) *d*-dimensional *S* with $S = S\mathbb{I}_{[0,\zeta]}$.

Super-hedging: for $V \in \mathcal{O}_+$ and $T \in \mathcal{T}$, super-hedging value $\overline{p}(V, T)$ is defined as the infimum of all x > 0 such that

$$\exists X^{x} \in x\mathcal{X} \text{ with } \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left[X_{T}^{x} < V_{T}, \ T < \zeta\right] = 0.$$

 $\mathbf{NA}_1: \ \overline{p}(V, T) = 0 \implies \mathbb{P}[V_T > 0, T < \zeta] = 0, \ \forall \mathbb{P} \in \mathcal{P}.$

FTAP: NA₁ $\iff \forall \mathbb{P} \in \mathcal{P}, \exists$ supermartingale measure $\mathbb{Q} \stackrel{\leq \zeta}{\sim} \mathbb{P}$.

Super-hedging duality:

THANK YOU!