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1. Kpatkoe BeegeHme. lgess M3C (B HenpepbIBHOM BpeMeHM )
N HEKOTOpPbLIE ero CBONCTBA.

Ponb npeobpasosatus Jlexxanapa, dyHkuns JlsnyHosa,
yCpeAHEHNE TPAEKTOPUIM NCXOLHOrO MPOCTPaHCTBA (B

onTrMmn3auun).
OueHka CKOpOCTU CXOZUMOCTU NO ONTUMU3UPYEMOI]

byHKUMN. HekoTopble BbIBOABI.



[Mnan (npogonr>keHune)

2. Obwme noHATKS, ODBEKTBI U KOHCTPYKLMW: UCXOAHAS 1
[BOCTBEHHAs HOPMa, MPOKCU-PYHKLNS HA 3alaHHOM
BbINYKJIOM KOMMaKTE 1 ee ConpskeHHasi (npeobpasoBaHue
Jlexxanppa-®Petxens), ux ceoiicTea (Npy ycnosun CubHOM
BbIMYKJIOCTN).

[TpuMepsbl: “eBKANAOBbLIE" C/lydan KakK BO BCEM MPOCTPAHCTBE,
TaK U B LWApe, W SHTPONUiiHas NPOKCU-PYHKLMNS Ha

CTaHAAPTHOM CUMIJIEKCe N pacnpegeneHmne [ nbbca.

3. MNpunoxenne M3C Kk 3agave 0 MHOropykom baHauTe.

4. KpaTKnin CNNCOK NuTepaTypsl.



Introduction

Mirror Descent Method (MDA) is a gradient-type recursive
method for convex optimization, i.e. primal-dual method
performing the descent in a dual space and mapping the
resulted points to a primal space. See the following references:

Nemirovski and Yudin (1979/1983): [1]

Ben-Tal, Margalit, and Nemirovski (2001): 2]
Beck and Teboulle (2003): [3]

Nesterov (2005, 2007): [4], [5]

Juditsky, Nazin, Tsybakov, and Vayatis (2005): [6]
Juditsky, Lan, Nemirovski, and Shapiro (2007): [7]
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1 Idea behind MDM (continuous time) [1]

Consider a primal-dual method, that is MDM:

) = =V f(z(t), €0)=4&, (1)
r(t) = VeW(E(R)), t=0. (2)

Here:
e fisa convex function to be minimized in Banach space F,

e IV is a uniform differentiable, convex function on dual
space £™ .



As an example, “Euclidean” case of

1
W) = 5 €l

gives a well-known standard gradient method
2(t) = =V, f(z(1)) .

Let us look at a simple analysis as follows.



Assume

x*

= arg min f(x).

Then we have a candidate Lyapunov function

W.(€)
since

dW,(&(t))
dt

VANVA

that is function W, (£

N——"

S W(E)- <&z >,

<E(), VeW(E(R)) — 2* > (3)
_<vf(()),g;()_g;> (4)
f(x) = f(z(?)) (5)
0, (6)

decreases along the trajectory {£(¢)}.
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Furthermore, (3)—(5) lead to

fa®) - 1) < <€ > -0 g




and, assuming that

and integrating by ¢t € [0, 7], we get

T
| fa-Ts6)
0
< V(z")
with the Legendre transformation

V(z) = Stglp{< & x> —W(E)}.

A
A
™
=
-
v
|
=
™
=
@



Now, introduce the average estimate

By Jensen's inequality, due to convexity of f(x), egs (8)—(9)
lead to

= V() (10)

Remark: The rate O(1/T) in the upper bound above

changes for that of O(1/+/T) when working with discreet
time gradient observations.
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Résumé:

e Function W : E* — R is a parameter of MDM which
ensures the Lyapunov function W, : E* — R; in
particular, MDM reduces to standard gradient method;
therefore, this additional degree of freedom may improve
the accuracy algorithm, at least potentially.

e MDM leads to the average estimate Z(?), i.e. time-average

to current estimates over the time interval [0, ¢].
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e Non-asymptotical upper bound on difference between
current estimation function f(x(¢)) and function minimum
f(x*) is ensured; this upper bound is of type O(T~!), and
it is directly depending on V' (x*); therefore, the given
class function has to ensure the finite upper bound
sup V' (x). (Thus, further consideration is reduced to
function minimization over a given compact convex set.)

e The previous consideration shows the role of Legendre

transformation.
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2 A Generalized View-Point

Proxy functions. Denote by E the space R™ with a norm
||| and by E* the dual space which is RM equipped with the

conjugate (dual) norm

|2]|, = max 210, Vze& E*
T ell=

Let © be a convex, closed set in E. For a given
parameter 5 > 0 and a convex function V : 0 — R, we
call [-conjugate function of V' the Legendre—Fenchel type

transform of [SV:

Vze B, Ws(z) = 21615 {—2"0—-8V(0)} . (11)

13



Assumption (L). A convex function V : © — R s such

that its B-conjugate Wy is continuously differentiable on E*
and its gradient Wy satisfies

1
IVWa(2) = VWs(2)| € 5lle =2l Veze B 8>0

where o > 0 is a constant independent of [.
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Assumption (L) relates to the strong convexity w.r.t. initial
norm || - ||:

V(sz+(1=s)y) < sV(@)+ (L= )V (y) - Fs(1—s)e —y|
(12)
for all x,y € © and any s € [0, 1].

The following proposition sums up some properties
of [-conjugates and, in particular, yields a sufficient
condition for Assumption (L).
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Proposition 1. Let function V : © — R be convex
and 3> 0. Then, the B-conjugate W3 of V has the
following properties.

1. The function Wgs: E* — R is convex and has a
conjugate BV, i.e.,

Ve O, BV(A)=sup {—2"0—W;s(2)}.

ze B*

2. If function 'V is «-strongly convex with respect to the
initial norm || - || then
(i) Assumption (L) holds true,
(ii) ar%ngax [—2"0—BV(0)} = —-VW;s(z) € 0.
c
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Definition 1. We call V : © — R, proxy function ifitis
convex, and

(i) there exists a point 6, € © such

that min V(0) = V(6.) .
0cO

(ii) Assumption (L) holds true.
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Example 1: Consider Euclidean space RM as set © = RV
Then half of the squared Euclidean norm be related

proxy-function
1
V(d) = : 101>, 6 RM.

Indeed, minimum point 8, = 0 € R™ the function is strongly
convex w.r.t. the Euclidean norm, and the constant of strong
convexity o« = 1. Evidently, £* = FE, a 5-conjugate function

1
28
with VIVs(2) = 2/5. O

Ws(z) Izl*, zeRY
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Example 2: Let set © in the previous Example be Euclidean
r-ball with the center at the origin, » > 0. The same
proxy-function leads to the related S-conjugate function as

follows: Vz € RM,

25 112117, |z[| < B,
Wps(2) = { i

rl|z|| — grz, otherwise.

The gradient

5% |z]] < 7B,

VIWs(z) = { ’

rz/||z]|, otherwise;

it realizes the metric projection onto ball B, 3.
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Example 3: Consider a standard simplex © = ©,, and an
entropy-type proxy function

M : :
V(0) = In(M) + ijl 99) 1n o) (13)

(where 01n 0 = 0) which has a single minimizer
0. = (1/M,...,1/M)" with V(6,) = 0.

Let the initial norm in R™ be 1-norm

M :
oll, =3 109, o erM.
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Therefore, the initial space is £ = ¢, and the dual space
E* = (M is RM equipped with the sup-norm

12|l = max 270 = max [zVY)|, Vze E*
161, =1 1<j<M

It is directly checked that this function is a-strongly convex
w.r.t. the 1-norm, with the parameter

a=1.

This leads to -conjugate function to V() as follows:

M

Ws(z) = In (% Zez(k)/5> , z€RM (14)

k=1
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with partial derivatives relating to a Gibbs distribution on the
coordinates of vector z = (z(M), ..., 2T with 3 being a
“temperature’ parameter:

M —1
_8Wﬂ(z) _ e—z(j)/ﬁ (Z ez(k)/5> , ] _ 17 N .,M. (15)

5’z(]) P—

[]
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Convex Stochastic Optimization Problem

AO)2EQ(0,2) — 2%18

with loss function () : © x Z — R, being such that the
random function Q(-,7):©® — R, is convex a.s., on a
convex closed set © C RM.

Let a learning sample be given in the form of an i.i.d.

sequence (Z1,...,7Z;_1), where each Z; has the same
distribution as 7.

23



Denote stochastic subgradients
w(0) = V,Q0,7), i=12,..., (16)

which are measurable functions on © x Z such that, for
any 0 € O, the expectation Ewu;(6) belongs to the
subdifferential of the function A(#).
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Mirror Descent Algorithm (MDA)

The algorithm is defined as follows:

o Fix the initial value (;, = 0 € R™,

e Fori=1,...,t— 1, do the recursive update
G = Gi—1+7ui(fiz1)
(17)
(973 — —VWQZ(CZ) '

e QOutput at iteration t the following convex combination:
t t —1
0r = Z%Qi—l (Z %‘) : (18)
i=1 i=1
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3 Multi-Armed Bandit Problem (classic).

Presented at the 17th IFAC World Congress:

e Juditsky, A., A.V. Nazin, A.B. Tsybakov, N. Vayatis.
Gap-free Bounds for Stochastic Multi-Armed Bandit.
Proc. 17th IFAC World Congress, Seoul, Korea, 6—11 July
2008, pp.11560-11563.
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Let X = {x(1),...,2(N)} be a set of NV available actions. At
each time t =1,2,..., we have to choose sequentially an
action x; € X. We denote by 7, the observable
(instantaneous) loss for the choice of x;, and introduce the
average loss up to horizon 1" which is to be minimized:

T
1
@T:T;m. (19)
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A strategy U is a sequence of rules for the choice z; at times
t =1,...,T. In the stochastic setup that we consider here,
the sequence of losses (7;);>1 is a stochastic process and x; is
a measurable function (random, in general) depending only on
the vector of past decisions and losses

(xla ceey L1531y - - 77715—1)-
Any strategy U generates a flow of o-algebras
Fi=0cf{x,...,z5;m,...,mF, t > 1 (for brevity we do not

indicate the dependence of F; on U). Throughout the paper
we denote by z\9) the jth component of vector z € RY.
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Two basic assumptions:
A1l. With probability 1, the conditional expectations satisty
E{n | Fi1, s =x(k)}=ag, k=1,... N, (20)
where ar € R are unknown deterministic values.

The value a;, characterizes the expected loss for deciding to
take the action x; = x(k) at time ¢t. Assumption Al says that
this loss should not depend on ¢.

A2. The second conditional moment of the loss 7; is a.s.
bounded by a constant:

E{n? | Fie1, 2} < 0° < 00. (21)
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It is easy to prove (see, e.g., [8]) that under these
assumptions all the limiting points of the average loss
sequence (®;);>1 cannot be almost surely (a.s.) less than

A .
Amin — k—I{HnN ag .

Thus, the problem is to design a strategy U/* which has the
asymptotically minimal average loss:

Or = apmin as 1T — oo, (22)

in an appropriate probability sense.
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We study here convergence in mean, trying to get the rate of
convergence

E((I)T) — Qmin

as fast as possible.
In particular, we provide non-asymptotic upper bounds for the
expected excess risk E(®7) — a,;, that are close, up to

logarithmic factors, to the lower bound of the order /N /T
proved for arbitrary N by (see Theorem 6.11 in [10]).
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We will suppose that the following assumption on the loss
sequence (7;);>1 holds:

A3. The losses are nonnegative: n, > 0 a.s.

Below we propose a randomized decision strategy in which, at

each step t 4+ 1, the action x;,; is drawn according to a

>
distribution p; = (pgl), . ,pﬁN)) over X where:

pi 2 P(wyy = a(k)|F), k=1,...,N. (23)

The update of the distribution p; over time is given by the
MDA.
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Denote by © the simplex of all probability vectors over X:
A N N }
@—{p€R+‘Zk:1p —1}. (24)

We then define the mean (over the set of actions) loss
function A on ©:

N
Alp) => awp™® =a'p, peo, (25)
k=1
where a = (ay,...,ay)". Since p; is a random vector, the

quantity A(p;) is a random variable. The update rule for the
probability distribution p; uses a stochastic gradient of A.

33



The expected average loss equals to the average over time of
the expectations [EA(p;), that is

E(®r) = 7 > B(E( | Fir) = 7 3 EAp-).
(26)

~

Theorem. Let assumptions AI-A3 be satisfied and let the
conditional distributions (p;);>o be defined by the MDA.
Then, for any horizon T > 1,

V(T +1)NIn N

E(®r) — amnin < 20 i

(27)
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The MD algorithm for multi-armed bandit.
1. Fixpo=(N"1,..., N and {, =0 € R".
2. Fort=1,... T

(a) draw an action z; = x(k;) with random k; distributed
according to p;_1;

(b) compute the stochastic gradient

ue(prt) = gy e (k) (28)

Pi—1

(c) update the dual and probability vectors

G = Go1+ M (pi—1), (29)
pe = —VW5(G). (30)
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3. At horizon t = T, output a sequence of actions

(ZCl, ce ,ZCT).

The tuning parameters ~; and (3, are as follows: Vt > 1,

=1, Bii1=PBoVt, Po=0y/N/(InN). (31)

Notice that

IE{ o en(ke) ]-“tl} —a=VAlp_1). (32

36



Here is the corrected information lower bound from [10],
Theorem 6.11. Let ®; 7 be mean losses under fixed -th arm,

e, x; = x(i).

Theorem. LetT, N > 1 be such that T > N/(41n(4/3)).
There exists a loss function such that for any, possibly
randomized, control strategy

E((I) n @ >> VT (33)
Su — 1IN i = ,
=\ ey ) T 30 /ndgs

where sup is over set of all multi-armed bandit problems with
losses n; with values from interval |0, 1] a.s.
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Remarks: The information lower bound above (see [10],
Theorem 6.11) differs from the upper bound (27) by

logarithmic term vIn V.
The wrong constant in the lower bound of Theorem 6.11 [10]

2—1
V2 ~ 0.1365 (34)
v/32In4/3
is more than that of Theorem
1
~ 0.0583 . (35)

324/In4/3

Unfortunately, the constant (34) is uncorrectly calculated in
[10], page 165.
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4 Multi-Armed Bandit Governed by a
Stationary Finite Markov Chain.

To be presented at the ECC2013:

e Nazin, A.V., B.M. Miller. Mirror Decent Algorithm for a
Multi-Armed Bandit Governed by a Stationary Finite State
Markov Chain. The 12th European Control Conference,
ECC13, July 17-19, 2013, Zurich, Switzerland.
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In addition to the classic case of Multi-Armed Bandit
Problem, assume that instantaneous losses n; depend now on
both chosen arm z; € X and current state 2, € Z of unknown

stationary finite Markov Chain (MC), Z = {z(1),...,z(K)}.
The main new assumption is as follows:

e the transition probabilities of the state 2z, € Z at each
time t € {0,1,...} to the next state z;,1 € Z are
presented by unknown conditional probabilities: Vt,

P{zer1 = 2(5) | 2 = 2(0) } = my; (36)

e MC state z,; is observable at current time ¢t > 0.
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Further assumptions:

Al. For eacht = 1,2,... the sets of random variables

{m(z,u,w)|z€ Z,uec U} and

{HS(Zvuac‘J))Zk)uk’ZE Z, u < U, S = 1,t_1, k:H}

are independent.

A2. For each z(¢1) € Z, u({) € U, and t = 1,2, ... the losses
ne(2(i),u(f),w) are non-negative a.s. and their a priori
unknown expectations are time-invariant:

E{n,(2(i),u(),w)} = a; Vt. (37)
A3. The losses 1;(2(i), u(f),w) are bounded in the mean
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A4.

Ab5.

square sense, I.e.
E{n; (2(i),u(),w)} < 0” < co. (38)

The Markov chain is regular, i.e., the transition probability
matrix II is regular (i.e., the state set Z represents a
unique ergodic class).

The initial distribution of MC assumed to be stationary.

The stationary distribution of the MC states is assumed to
be unknown.
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Introduce randomized strategy by
A\ A Py, = u(l) |z = 2(3), Foq}. (39)

Under a stationary strategy U, with d = [|d]|, the loss
expectation lead to the loss function

K N |
E{n} = > a4y  aed™ (40)
2 A(d), deD, (41)
with stationary state probabilities

¢ = P{z = 2(i)} (42)
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and the set stochastic matrix

A (i0) Mg — 1 (= _ }
D {d‘d >0, 3" d®W=1G(=TK (=T N)}.
Denote
é .
Apin = min A(d) . (43)

Theorem. Let assumptions AI-A5 be satisfied and let the
conditional distributions (dgi))tzo , i =1, K, be defined by the
randomized control algorithm (see below) with parameters
(48). Then, for any time T > 1,

VT +1
E(®7) — Apin < 20 VKNI N T+ . (44)
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Thus, we fix the increasing temperature parameter sequence
(B¢)e>0 and introduce the control randomized strategy as
follows.
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1. Fix the initial matrix dy with equal entries, i.e., d(()ij ) =1 /N,
and zero dual matrix (; = 0 € REXV;
(a) for each t > 0, by having the observed state z; =
2(i), draw arm x, = x({;) with random ¢, € {1, N}
distributed according to (d\™", ... d""NT;

(b) compute a stochastic gradient

St = 222 ex (ir)en(0r) (45)
t

(c) update both dual and initial variables

Gr1 = G+ S, (46)
dﬁl)l — Gﬁt(Ct(jr)ﬁa Vi=1 K. (47)
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2. At time T of interest, output the observed sequences of
states (zy, ..., zr), control actions (ug, . ..,ur), matrices

(do,...,dr), and the observed losses (n1,...,nry1) and
Orp.

The tuning algorithm parameter j3; is defined as follows:
Vi=0,1,...

By =BovVt+1, Bo=0N/(KInN). (48)
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BbiuncnurtenoHbii npumep: K =7un N = 5;

(1/4 12 0 0 0 0 1/4)

1/4 1/4 1/2 0 0 0 0

0 1/4 1/4 1/2 0 0 0

l7;ll=1 0 0 1/4 1/4 1/2 0 0
0 0 1/4 1/4 1/2 0

0 0 0 0 1/4 1/4 1/2
0 0 0 0 1/4 1/4)
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[anee, MaTpuua CpedHnx noTepb

(01 03 05 07 09 )
0.55 015 025 035 045
0.325 0.375 0.175 0.225 0.275
lall = | 0.2375 0.2625 0.2875 0.1875 0.2125 |,
0.175 0.225 0325 0.375 0.275
015 025 035 055 045
\ 01 07 09 03 05 )

n A, = 0.1482 . Cayyaiinble notepun n;(2(7), x(£),w) B
cocTosiHuu 2(7) 1 BbIOpaHHON py4ke x(£) ABNSAOTCS H.0.p. C.B.
Beprynnu c seposaTtHocTamu P (n:(2(2), z(£),w) = 1) = a.

49



10_ . . N S S S S |

Puc. 1. Pe3ynbTaTbl BbIHUCANTENBHOIO MpPMMeEpPa C YUCIOM COCTOSIHUIA
K =7 v yncnom pyk N = 5 npeactaBsieHbl B ABOWHOM norapudpmmnye-

CKOM MacliTabe Ha nHtepsase Bpemenn t = 100, ..., 10000.
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