Метод зеркального спуска в задачах о многоруком бандите

А.В. НАЗИН

Институт проблем управления РАН nazine@ipu.ru, anazine@rambler.ru

На основе совместных работ с А.Б. Юдицким, А.Б. Цыбаковым и Н. Ваятисом

НМУ, Москва, 27 апреля 2013 г.

План

1. Краткое введение. Идея МЗС (в непрерывном времени) и некоторые его свойства.

Роль преобразования Лежандра, функция Ляпунова, усреднение траектории исходного пространства (в оптимизации).

Оценка скорости сходимости по оптимизируемой функции. Некоторые выводы.

План (продолжение)

 Общие понятия, объекты и конструкции: исходная и двойственная норма, прокси-функция на заданном выпуклом компакте и ее сопряженная (преобразование Лежандра-Фенхеля), их свойства (при условии сильной выпуклости).
 Примеры: "евклидовые" случаи как во всем пространстве,

так и в шаре, и энтропийная прокси-функция на стандартном симплексе и распределение Гиббса.

- 3. Приложение МЗС к задаче о многоруком бандите.
- 4. Краткий список литературы.

Introduction

Mirror Descent Method (MDA) is a gradient-type recursive method for convex optimization, i.e. primal-dual method performing the descent in a dual space and mapping the resulted points to a primal space. See the following references:

- 1. Nemirovski and Yudin (1979/1983): [1]
- 2. Ben-Tal, Margalit, and Nemirovski (2001): [2]
- 3. Beck and Teboulle (2003): [3]
- 4. Nesterov (2005, 2007): [4], [5]
- 5. Juditsky, Nazin, Tsybakov, and Vayatis (2005): [6]
- 6. Juditsky, Lan, Nemirovski, and Shapiro (2007): [7]

1 Idea behind MDM (continuous time) [1]

Consider a primal-dual method, that is MDM:

$$\dot{\xi}(t) = -\nabla_x f(x(t)), \quad \xi(0) = \xi_0,$$
 (1)

$$x(t) = \nabla_{\xi} W(\xi(t)), \quad t \ge 0.$$
(2)

Here:

f is a convex function to be minimized in Banach space E,
W is a uniform differentiable, convex function on dual space E*.

As an example, "Euclidean" case of

$$W(\xi) = \frac{1}{2} \|\xi\|_2^2$$

gives a well-known standard gradient method

$$\dot{x}(t) = -\nabla_x f(x(t))$$

Let us look at a simple analysis as follows.

Assume

$$x^* = \arg\min f(x).$$

Then we have a candidate Lyapunov function

$$W_*(\xi) \triangleq W(\xi) - \langle \xi, x^* \rangle,$$

since

$$\frac{dW_*(\xi(t))}{dt} = \langle \dot{\xi}(t), \nabla_{\xi} W(\xi(t)) - x^* \rangle$$
 (3)

$$= - \langle \nabla_x f(x(t)), x(t) - x^* \rangle$$
 (4)

$$\leq f(x^*) - f(x(t)) \tag{5}$$

$$\leq 0,$$
 (6)

that is function $W_*(\xi)$ decreases along the trajectory $\{\xi(t)\}$.

Furthermore, (3)-(5) lead to

$$f(x(t)) - f(x^*) \leq \langle \dot{\xi}(t), x^* \rangle - \frac{dW(\xi(t))}{dt}, \quad (7)$$

and, assuming that

$$\xi(0) = 0, \quad W(0) = 0,$$

and integrating by $t\in[0,T]$, we get

$$\int_{0}^{T} f(x(t))dt - Tf(x^{*}) \leq <\xi(T), x^{*} > -W(\xi(T)) (8)$$
$$\leq V(x^{*})$$
(9)

with the Legendre transformation

$$V(x) \triangleq \sup_{\xi} \{ <\xi, x > -W(\xi) \}.$$

Now, introduce the average estimate

$$\widehat{x}(T) \triangleq \frac{1}{T} \int_0^T x(t) dt$$
.

By Jensen's inequality, due to convexity of f(x), eqs (8)–(9) lead to

$$f(\widehat{x}(T)) - f(x^*) \leq \frac{1}{T} V(x^*).$$
 (10)

Remark: The rate O(1/T) in the upper bound above changes for that of $O(1/\sqrt{T})$ when working with discreet time gradient observations.

Résumé:

- Function W : E^{*} → ℝ is a parameter of MDM which ensures the Lyapunov function W_{*} : E^{*} → ℝ; in particular, MDM reduces to standard gradient method; therefore, this additional degree of freedom may improve the accuracy algorithm, at least potentially.
- MDM leads to the average estimate $\hat{x}(t)$, i.e. time-average to current estimates over the time interval [0, t].

- Non-asymptotical upper bound on difference between current estimation function f(x(t)) and function minimum f(x*) is ensured; this upper bound is of type O(T⁻¹), and it is directly depending on V(x*); therefore, the given class function has to ensure the finite upper bound sup V(x). (Thus, further consideration is reduced to function minimization over a given compact convex set.)
- The previous consideration shows the role of Legendre transformation.

2 A Generalized View-Point

Proxy functions. Denote by E the space \mathbb{R}^M with a norm ||z|| and by E^* the dual space which is \mathbb{R}^M equipped with the conjugate (dual) norm

$$||z||_* = \max_{\|\theta\|=1} z^T \theta, \quad \forall z \in E^*.$$

Let Θ be a convex, closed set in E. For a given parameter $\beta > 0$ and a convex function $V : \Theta \to \mathbb{R}$, we call β -conjugate function of V the Legendre–Fenchel type transform of βV :

$$\forall z \in E^*, \quad W_{\beta}(z) = \sup_{\theta \in \Theta} \left\{ -z^T \theta - \beta V(\theta) \right\} .$$
 (11)

Assumption (L). A convex function $V : \Theta \to \mathbb{R}$ is such that its β -conjugate W_{β} is continuously differentiable on E^* and its gradient ∇W_{β} satisfies

$$\|\nabla W_{\beta}(z) - \nabla W_{\beta}(\tilde{z})\| \le \frac{1}{\alpha\beta} \|z - \tilde{z}\|_{*}, \quad \forall z, \tilde{z} \in E^{*}, \ \beta > 0,$$

where $\alpha > 0$ is a constant independent of β .

Assumption (L) relates to the strong convexity w.r.t. *initial* norm $\|\cdot\|$:

$$V(sx + (1-s)y) \le sV(x) + (1-s)V(y) - \frac{\alpha}{2}s(1-s)||x-y||^2$$
(12)

for all
$$x, y \in \Theta$$
 and any $s \in [0, 1]$.

The following proposition sums up some properties of β -conjugates and, in particular, yields a sufficient condition for Assumption (L). **Proposition 1.** Let function $V : \Theta \to \mathbb{R}$ be convex and $\beta > 0$. Then, the β -conjugate W_{β} of V has the following properties.

1. The function $W_{\beta}: E^* \to \mathbb{R}$ is convex and has a conjugate βV , i.e.,

$$\forall \theta \in \Theta, \quad \beta V(\theta) = \sup_{z \in E^*} \left\{ -z^T \theta - W_\beta(z) \right\} .$$

- 2. If function V is α -strongly convex with respect to the initial norm $\|\cdot\|$ then
 - (i) Assumption (L) holds true,

(ii)
$$\operatorname{argmax}_{\theta \in \Theta} \left\{ -z^T \theta - \beta V(\theta) \right\} = -\nabla W_{\beta}(z) \in \Theta$$
.

Definition 1. We call $V : \Theta \to \mathbb{R}_+$ proxy function *if it is* convex, and

(i) there exists a point
$$\theta_* \in \Theta$$
 such that $\min_{\theta \in \Theta} V(\theta) = V(\theta_*)$,

(ii) Assumption (L) holds true.

Example 1: Consider Euclidean space \mathbb{R}^M as set $\Theta = \mathbb{R}^M$. Then half of the squared Euclidean norm be related proxy-function

$$V(\theta) = \frac{1}{2} \|\theta\|^2, \quad \theta \in \mathbb{R}^M.$$

Indeed, minimum point $\theta_* = 0 \in \mathbb{R}^M$, the function is strongly convex w.r.t. the Euclidean norm, and the constant of strong convexity $\alpha = 1$. Evidently, $E^* = E$, a β -conjugate function

$$W_{\beta}(z) = \frac{1}{2\beta} \|z\|^2, \quad z \in \mathbb{R}^M$$

with $abla W_{eta}(z) = z/eta$.

Example 2: Let set Θ in the previous Example be Euclidean r-ball with the center at the origin, r > 0. The same proxy-function leads to the related β -conjugate function as follows: $\forall z \in \mathbb{R}^M$,

$$W_{\beta}(z) = \begin{cases} \frac{1}{2\beta} \|z\|^2, & \|z\| \le r\beta, \\ r\|z\| - \frac{\beta}{2}r^2, & \text{otherwise.} \end{cases}$$

The gradient

$$\nabla W_{\beta}(z) = \begin{cases} \frac{1}{\beta} z, & ||z|| \le r\beta, \\ rz/||z||, & \text{otherwise;} \end{cases}$$

it realizes the metric projection onto ball $B_{r\beta}$.

Example 3: Consider a standard simplex $\Theta = \Theta_M$ and an entropy-type proxy function

$$V(\theta) = \ln(M) + \sum_{j=1}^{M} \theta^{(j)} \ln \theta^{(j)}$$
(13)

(where $0 \ln 0 \triangleq 0$) which has a single minimizer $\theta_* = (1/M, \dots, 1/M)^T$ with $V(\theta_*) = 0$.

Let the initial norm in \mathbb{R}^M be 1-norm

$$\|\theta\|_1 = \sum_{j=1}^M |\theta^{(j)}|, \quad \theta \in \mathbb{R}^M$$

Therefore, the initial space is $E = \ell_1^M$, and the dual space $E^* = \ell_{\infty}^M$ is \mathbb{R}^M equipped with the sup-norm

$$||z||_{\infty} = \max_{\|\theta\|_1=1} z^T \theta = \max_{1 \le j \le M} |z^{(j)}|, \quad \forall z \in E^*.$$

It is directly checked that this function is α -strongly convex w.r.t. the 1-norm, with the parameter

$$\alpha = 1$$
.

This leads to β -conjugate function to $V(\theta)$ as follows:

$$W_{\beta}(z) = \beta \ln\left(\frac{1}{M} \sum_{k=1}^{M} e^{-z^{(k)}/\beta}\right), \quad z \in \mathbb{R}^{M}, \qquad (14)$$

with partial derivatives relating to a Gibbs distribution on the coordinates of vector $z = (z^{(1)}, \ldots, z^{(M)})^T$, with β being a "temperature" parameter:

$$-\frac{\partial W_{\beta}(z)}{\partial z^{(j)}} = e^{-z^{(j)}/\beta} \left(\sum_{k=1}^{M} e^{-z^{(k)}/\beta}\right)^{-1}, \ j = 1, \dots, M.$$
(15)

Convex Stochastic Optimization Problem

$$A(\theta) \triangleq \mathbb{E} Q(\theta, Z) \to \min_{\theta \in \Theta}$$

with loss function $Q: \Theta \times \mathcal{Z} \to \mathbb{R}_+$ being such that the random function $Q(\cdot, Z): \Theta \to \mathbb{R}_+$ is convex a.s., on a convex closed set $\Theta \subset \mathbb{R}^M$.

Let a learning sample be given in the form of an i.i.d. sequence (Z_1, \ldots, Z_{t-1}) , where each Z_i has the same distribution as Z.

Denote stochastic subgradients

$$u_i(\theta) = \nabla_{\theta} Q(\theta, Z_i), \quad i = 1, 2, \dots,$$
 (16)

which are measurable functions on $\Theta \times \mathcal{Z}$ such that, for any $\theta \in \Theta$, the expectation $\mathbb{E} u_i(\theta)$ belongs to the subdifferential of the function $A(\theta)$. Mirror Descent Algorithm (MDA) The algorithm is defined as follows:

- Fix the initial value $\zeta_0 = 0 \in \mathbb{R}^M$.
- For $i = 1, \ldots, t 1$, do the recursive update

$$\begin{aligned} \zeta_i &= \zeta_{i-1} + \gamma_i u_i(\theta_{i-1}), \\ \theta_i &= -\nabla W_{\beta_i}(\zeta_i). \end{aligned}$$
(17)

• Output at iteration t the following convex combination:

$$\widehat{\theta}_t = \sum_{i=1}^t \gamma_i \theta_{i-1} \left(\sum_{i=1}^t \gamma_i \right)^{-1} . \tag{18}$$

3 Multi-Armed Bandit Problem (classic).

Presented at the 17th IFAC World Congress:

 Juditsky, A., A.V. Nazin, A.B. Tsybakov, N. Vayatis. Gap-free Bounds for Stochastic Multi-Armed Bandit. *Proc. 17th IFAC World Congress, Seoul, Korea, 6–11 July* 2008, pp.11560–11563. Let $X = \{x(1), \ldots, x(N)\}$ be a set of N available actions. At each time $t = 1, 2, \ldots$, we have to choose sequentially an action $x_t \in X$. We denote by η_t the observable (instantaneous) loss for the choice of x_t , and introduce the average loss up to horizon T which is to be minimized:

$$\Phi_T = \frac{1}{T} \sum_{t=1}^T \eta_t \,. \tag{19}$$

A strategy \mathcal{U} is a sequence of rules for the choice x_t at times $t = 1, \ldots, T$. In the stochastic setup that we consider here, the sequence of losses $(\eta_t)_{t\geq 1}$ is a stochastic process and x_t is a measurable function (random, in general) depending only on the vector of past decisions and losses

 $(x_1,\ldots,x_{t-1};\eta_1,\ldots,\eta_{t-1}).$

Any strategy \mathcal{U} generates a flow of σ -algebras $\mathcal{F}_t = \sigma\{x_1, \ldots, x_t; \eta_1, \ldots, \eta_t\}, t \ge 1$ (for brevity we do not indicate the dependence of \mathcal{F}_t on \mathcal{U}). Throughout the paper we denote by $z^{(j)}$ the *j*th component of vector $z \in \mathbb{R}^N$. Two basic assumptions:

A1. With probability 1, the conditional expectations satisfy

$$\mathbb{E}\{\eta_t \,|\, \mathcal{F}_{t-1}\,,\, x_t = x(k)\} = a_k, \ k = 1, \dots, N, \qquad (20)$$

where $a_k \in \mathbb{R}$ are unknown deterministic values.

The value a_k characterizes the expected loss for deciding to take the action $x_t = x(k)$ at time t. Assumption A1 says that this loss should not depend on t.

A2. The second conditional moment of the loss η_t is a.s. bounded by a constant:

$$\mathbb{E}\{\eta_t^2 \,|\, \mathcal{F}_{t-1} \,,\, x_t\} \le \sigma^2 < \infty \,. \tag{21}$$

It is easy to prove (see, e.g., [8]) that under these assumptions all the limiting points of the average loss sequence $(\Phi_t)_{t\geq 1}$ cannot be almost surely (a.s.) less than

$$a_{\min} \triangleq \min_{k=1,\dots,N} a_k \, .$$

Thus, the problem is to design a strategy \mathcal{U}^* which has the asymptotically minimal average loss:

$$\Phi_T \to a_{\min} \quad \text{as} \quad T \to \infty \,,$$
 (22)

in an appropriate probability sense.

We study here *convergence in mean*, trying to get the rate of convergence

$$\mathbb{E}(\Phi_T) \to a_{\min}$$

as fast as possible.

In particular, we provide *non-asymptotic* upper bounds for the expected excess risk $\mathbb{E}(\Phi_T) - a_{\min}$ that are close, up to logarithmic factors, to the lower bound of the order $\sqrt{N/T}$ proved for arbitrary N by (see Theorem 6.11 in [10]).

We will suppose that the following assumption on the loss sequence $(\eta_t)_{t\geq 1}$ holds:

A3. The losses are nonnegative: $\eta_t \ge 0$ a.s.

Below we propose a randomized decision strategy in which, at each step t + 1, the action x_{t+1} is drawn according to a distribution $p_t \triangleq \left(p_t^{(1)}, \ldots, p_t^{(N)}\right)^\top$ over X where:

$$p_t^{(k)} \triangleq \mathbb{P}(x_{t+1} = x(k) | \mathcal{F}_t), \quad k = 1, \dots, N.$$
 (23)

The update of the distribution p_t over time is given by the MDA.

Denote by Θ the simplex of all probability vectors over X:

$$\Theta \triangleq \left\{ p \in \mathbb{R}^N_+ \mid \sum_{k=1}^N p^{(k)} = 1 \right\} \,. \tag{24}$$

We then define the mean (over the set of actions) loss function A on Θ :

$$A(p) = \sum_{k=1}^{N} a_k p^{(k)} = a^{\top} p \,, \quad p \in \Theta \,, \tag{25}$$

where $a = (a_1, \ldots, a_N)^{\top}$. Since p_t is a random vector, the quantity $A(p_t)$ is a random variable. The update rule for the probability distribution p_t uses a stochastic gradient of A.

The expected average loss equals to the average over time of the expectations $\mathbb{E}A(p_t)$, that is

$$\mathbb{E}(\Phi_T) = \frac{1}{T} \sum_{t=1}^T \mathbb{E}(\mathbb{E}(\eta_t \mid x_t, \mathcal{F}_{t-1})) = \frac{1}{T} \sum_{t=1}^T \mathbb{E}(A(p_{t-1})) .$$
(26)

Theorem. Let assumptions A1–A3 be satisfied and let the conditional distributions $(p_t)_{t\geq 0}$ be defined by the MDA. Then, for any horizon $T \geq 1$,

$$\mathbb{E}\left(\Phi_T\right) - a_{\min} \le 2\sigma \,\frac{\sqrt{(T+1)N\ln N}}{T} \,. \tag{27}$$

The MD algorithm for multi-armed bandit.

1. Fix $p_0 = (N^{-1}, \dots, N^{-1})^T$ and $\zeta_0 = 0 \in \mathbb{R}^N$.

2. For
$$t = 1, ..., T$$
:

- (a) draw an action $x_t = x(k_t)$ with random k_t distributed according to p_{t-1} ;
- (b) compute the stochastic gradient

$$u_t(p_{t-1}) = \frac{\eta_t}{p_{t-1}^{(k_t)}} e_N(k_t); \qquad (28)$$

(c) update the dual and probability vectors

$$\zeta_t = \zeta_{t-1} + \gamma_t u_t(p_{t-1}),$$
 (29)

$$p_t = -\nabla W_{\beta_t}(\zeta_t) \,. \tag{30}$$

3. At horizon t = T, output a sequence of actions (x_1, \ldots, x_T) .

The tuning parameters γ_t and β_t are as follows: $\forall t \geq 1$,

$$\gamma_t \equiv 1, \quad \beta_{t-1} = \beta_0 \sqrt{t}, \quad \beta_0 = \sigma \sqrt{N/(\ln N)}.$$
 (31)

Notice that

$$\mathbb{E}\left\{ \left. \frac{\eta_t}{p_{t-1}^{(k_t)}} e_N(k_t) \right| \mathcal{F}_{t-1} \right\} = a = \nabla A(p_{t-1}). \quad (32)$$

Here is the corrected information lower bound from [10], Theorem 6.11. Let $\Phi_{i,T}$ be mean losses under fixed *i*-th arm, i.e., $x_t \equiv x(i)$.

Theorem. Let $T, N \ge 1$ be such that $T > N/(4 \ln(4/3))$. There exists a loss function such that for any, possibly randomized, control strategy

$$\sup_{\mathcal{Z}} \mathbb{E} \left(\Phi_T - \min_{i=1,\dots,N} \Phi_{i,T} \right) \ge \frac{\sqrt{N/T}}{32\sqrt{\ln 4/3}}, \quad (33)$$

where sup is over set of all multi-armed bandit problems with losses η_t with values from interval [0, 1] a.s.

Remarks: The information lower bound above (see [10], Theorem 6.11) differs from the upper bound (27) by logarithmic term $\sqrt{\ln N}$.

The wrong constant in the lower bound of Theorem 6.11 [10]

$$\frac{\sqrt{2} - 1}{\sqrt{32\ln 4/3}} \approx 0.1365 \tag{34}$$

is more than that of Theorem

$$\frac{1}{32\sqrt{\ln 4/3}} \approx 0.0583.$$
 (35)

Unfortunately, the constant (34) is uncorrectly calculated in [10], page 165.

4 Multi-Armed Bandit Governed by a Stationary Finite Markov Chain.

To be presented at the ECC2013:

 Nazin, A.V., B.M. Miller. Mirror Decent Algorithm for a Multi-Armed Bandit Governed by a Stationary Finite State Markov Chain. *The 12th European Control Conference, ECC13, July 17–19, 2013, Zurich, Switzerland.* In addition to the classic case of Multi-Armed Bandit Problem, assume that instantaneous losses η_t depend now on both chosen arm $x_t \in X$ and current state $z_t \in Z$ of *unknown* stationary finite Markov Chain (MC), $Z = \{z(1), \ldots, z(K)\}$. The main new assumption is as follows:

• the transition probabilities of the state $z_t \in Z$ at each time $t \in \{0, 1, ...\}$ to the next state $z_{t+1} \in Z$ are presented by unknown conditional probabilities: $\forall t$,

$$\mathbb{P}\{z_{t+1} = z(j) \mid z_t = z(i)\} = \pi_{ij};$$
(36)

• MC state z_t is observable at current time $t \ge 0$.

Further assumptions:

A1. For each t = 1, 2, ... the sets of random variables

 $\{\eta_t(z, u, \omega) \mid z \in Z, u \in U\} \text{ and}$ $\{\eta_s(z, u, \omega), z_k, u_k \mid z \in Z, u \in U, s = \overline{1, t - 1}, k = \overline{1, t}\}$ are independent.

A2. For each $z(i) \in Z$, $u(\ell) \in U$, and t = 1, 2, ... the losses $\eta_t(z(i), u(\ell), \omega)$ are non-negative a.s. and their *a priori* unknown expectations are time-invariant:

$$\mathbb{E}\{\eta_t(z(i), u(\ell), \omega)\} \triangleq a_{i\ell} \quad \forall t.$$
(37)

A3. The losses $\eta_t(z(i), u(\ell), \omega)$ are bounded in the mean

square sense, i.e.

$$\mathbb{E}\{\eta_t^2(z(i), u(\ell), \omega)\} \le \sigma^2 < \infty.$$
(38)

- A4. The Markov chain is regular, i.e., the transition probability matrix Π is regular (i.e., the state set Z represents a unique ergodic class).
- A5. The initial distribution of MC assumed to be stationary. The stationary distribution of the MC states is assumed to be unknown.

Introduce randomized strategy by

$$d_t^{(i\ell)} \triangleq \mathbb{P}\{u_t = u(\ell) \mid z_t = z(i), \mathcal{F}_{t-1}\}.$$
 (39)

Under a stationary strategy \mathcal{U}_{St} with $d \triangleq ||d^{(i\ell)}||$, the loss expectation lead to the loss function

$$\mathbb{E}\{\eta_t\} = \sum_{i=1}^{K} q_i \sum_{\ell=1}^{N} a_{i\ell} d^{(i\ell)} \qquad (40)$$
$$\triangleq A(d), \quad d \in D, \qquad (41)$$

with stationary state probabilities

$$q_i \triangleq \mathbb{P}\{z_t = z(i)\} \tag{42}$$

and the set stochastic matrix

$$D \triangleq \left\{ d \left| d^{(i\ell)} \ge 0, \sum_{\ell=1}^{N} d^{(i\ell)} = 1 \right| \left(i = \overline{1, K}, \ell = \overline{1, N} \right) \right\}.$$

Denote

$$A_{\min} \triangleq \min_{d \in D} A(d).$$
(43)

Theorem. Let assumptions A1–A5 be satisfied and let the conditional distributions $(d_t^{(i)})_{t\geq 0}$, $i = \overline{1, K}$, be defined by the randomized control algorithm (see below) with parameters (48). Then, for any time $T \geq 1$,

$$\mathbb{E}\left(\Phi_{T}\right) - A_{\min} \leq 2\sigma \sqrt{KN \ln N} \frac{\sqrt{T+1}}{T} \,. \tag{44}$$

Thus, we fix the increasing temperature parameter sequence $(\beta_t)_{t\geq 0}$ and introduce the control randomized strategy as follows.

Fix the initial matrix d₀ with equal entries, i.e., d₀^(ij) ≡ 1/N, and zero dual matrix ζ₀ = 0 ∈ ℝ^{K×N};
 (a) for each t ≥ 0, by having the observed state z_t = z(i_t), draw arm x_t = x(ℓ_t) with random ℓ_t ∈ {1, N} distributed according to (d_t^(it1),...,d_t^(itN))[⊤];
 (b) compute a stochastic gradient

$$\Xi_{t+1} = \frac{\eta_{t+1}}{d_t^{i_t \ell_t}} e_K(i_t) e_N^{\mathsf{T}}(\ell_t) ; \qquad (45)$$

(c) update both dual and initial variables

$$\zeta_{t+1} = \zeta_t + \Xi_{t+1}, \qquad (46)$$

$$d_{t+1}^{(i)} = G_{\beta_t}(\zeta_{t+1}^{(i)}), \quad \forall i = \overline{1, K}.$$
 (47)

2. At time T of interest, output the observed sequences of states (z_0, \ldots, z_T) , control actions (u_0, \ldots, u_T) , matrices (d_0, \ldots, d_T) , and the observed losses $(\eta_1, \ldots, \eta_{T+1})$ and Φ_T .

The tuning algorithm parameter β_t is defined as follows: $\forall t = 0, 1, \ldots$,

$$\beta_t = \beta_0 \sqrt{t+1}, \quad \beta_0 = \sigma \sqrt{N/(K \ln N)}. \quad (48)$$

Вычислительный пример: K = 7 и N = 5;

$$\|\pi_{ij}\| = \begin{pmatrix} 1/4 & 1/2 & 0 & 0 & 0 & 0 & 1/4 \\ 1/4 & 1/4 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/4 & 1/4 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1/4 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/4 & 1/4 & 1/2 \\ 1/2 & 0 & 0 & 0 & 0 & 1/4 & 1/4 \end{pmatrix}$$

;

далее, матрица средних потерь

	(0.1	0	.3	().5		0.7		0.9	
		0.55	0.	15	0	.25	().35		0.45	
		0.325	0.3	875	0.	175	0	.225	С).275	
$\ a_{i\ell}\ =$	().2375	0.2	625	0.2	2875	0.	1875	0	.2125	,
		0.175	0.2	225	0.	325	0	.375	С).275	
		0.15	0.	25	0	.35	().55		0.45	
		0.1	0	.7	(0.9		0.3		0.5	

и $A_{\min} = 0.1482$. Случайные потери $\eta_t(z(i), x(\ell), \omega)$ в состоянии z(i) и выбранной ручке $x(\ell)$ являются н.о.р. с.в. Бернулли с вероятностями $\mathbb{P}\left(\eta_t(z(i), x(\ell), \omega) = 1\right) = a_{i\ell}$.

Рис. 1: Результаты вычислительного примера с числом состояний K = 7 и числом рук N = 5 представлены в двойном логарифмическом масштабе на интервале времени $t = 100, \ldots, 10000$.

Список литературы

- [1] Nemirovskii, A.S. and Yudin, D.B., Slozhnost' zadach i effektivnost' metodov optimizatsii, Moscow: Nauka, 1979 (in Russian). Translated under the title Problem Complexity and Method Efficiency in Optimization, Chichester: Wiley, 1983.
- [2] A. Ben-Tal, T. Margalit, A. Nemirovski. The ordered subsets mirror descent optimization method with applications to tomography. *SIOPT* 12(1), 79–108, 2001.
- [3] A. Beck, M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Oper. Res. Lett.* 31(3), 167–175, 2003.

- [4] Yu. Nesterov. Primal-dual subgradient methods for convex problems: Core discussion paper 2005/67.
 Louvain-la-Neuve, Belgium: Center for Operation Research and Econometrics, 2005.
- [5] Yu. Nesterov. Primal-dual subgradient methods for convex problems // Mathematical Programming, 2007. DOI: 10.1007/s10107-007-0149-x.
- [6] A.B. Juditsky, A.V. Nazin, A.B. Tsybakov, and N. Vayatis. Recursive aggregation of estimators by the mirror descent algorithm with averaging. *Problems of Information Transmission*, 41(4):368–384, 2005.

- [7] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro.
 Stochastic Approximation approach to Stochastic
 Programming. *Optimization Online*, 10/03/2007
 http://www.optimization-online.org/DB_HTML/2007/09/1787.html
- [8] A.V. Nazin and A.S. Poznyak. *Adaptive Choice of Variants*. Nauka, Moscow, 1986, (in Russian).
- [9] K. Najim and A.S. Poznyak. *Learning automata: theory and applications*. Pergamon Press, Inc., Elmsford, NY, USA, 1994. ISBN 0-08-042024-9.

[10] N. Cesa-Bianchi and G. Lugosi. *Prediction, Learning, and Games*. Cambridge University Press, 2006.

[11] Nazin, A.V., B.M. Miller. Robust Mirror Decent Algorithm for a Multi-Armed Bandit Governed by a Stationary Finite Markov Chain. *IFAC MIM'2013 Conference on Manufacturing Modelling, Management, and Control, June 19–21, 2013, Saint Petersburg, Russia.*

[12] Nazin, A.V., B.M. Miller. Mirror Decent Algorithm for a Multi-Armed Bandit Governed by a Stationary Finite State Markov Chain. *The 12th European Control Conference, ECC13, July 17–19, 2013, Zurich, Switzerland.*

THANK YOU FOR YOUR ATTENTION !!!