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I11an

1. Kparkoe BBesnenne. aes M3C (B HelpepbIBHOM BpeMEHHN) 1
HEKOTOPHbIE €ro CBOMCTBA.

Posaw npeobpaszoBanus Jlexxkanapa, dyakmnun JIsoyHoBa,
JIOITIOJTHUTEJIbHOE yCpeJHEHNE TPAEKTOPUU UCXO/IHOTO IIPOCTPAHCTBA.
O1leHKa CKOPOCTH CXOJIUMOCTH II0 OIITUMU3UPYEMOl (PYyHKITHU.

HexoTopbie BBIBOJIBI.



IInan (mmponoskenue 1)

2. O01mue MoHATUsSA, O0bEKTHI 1 KOHCTPYKIIUU: UCXOTHALA U
JIBOMICTBEHHAsT HOPMa, IIPOKCU-(PYHKIINST HA 3aJaHHOM BBIIIYKJIOM
KOMITAKTe U ee COpsizKeHHas (mpeobpasoBanue Jlexxanapa-Penxesst),
X CBOWCTBA (IIPU YCJIOBUU CUJIBHOI BBITYKJIOCTH).

[Ipumeps!: “eBKAMIOBBIE” CJIy4Yad KaK BO BCEM IIPOCTPAHCTBE, TaK U B
Iape, 1 SHTPONUNHAA TPOKCHU-(DPYHKIINS Ha CTAHIAPTHOM CHUMILIEKCE

1 rorenimaJj I'udoca.



[Inan (mmponoskenue 2)

3. Beimykitas 3aj1ada cTOXaCTHIECKON ONITUMU3AIH (U ee
JIeTEpPMUHUPOBAHHBIN cirydait). CroxacTuvdeckuii cyorpajmeHT u

anroput™ 3C, ero BepxHsisi TPAHUIA (CKOPOCTH CXOIUMOCTH).

4. IIpunoxenne M3C K cieIyronuM 3a,1a9aM:
1) oreHMBaHME TJIABHOTO BEKTOPA CTOXACTUIECKON MATPHUIIHI,

2) MHOTODYKWUiT OAH/INT.
5. 3aKJIIoueHne.

6. KpaTkuii crmcok JmTepaTyphl.



Introduction

Mirror Descent Method (MDA) is a gradient-type recursive
method for convex optimization, i.e. primal-dual method
performing the descent in a dual space and mapping the
resulted points to a primal space. See the following references:

Nemirovski and Yudin (1979/1983): [1]

Ben-Tal, Margalit, and Nemirovski (2001): 2]
Beck and Teboulle (2003): [3]

Nesterov (2005, 2007): [4], [5]

Juditsky, Nazin, Tsybakov, and Vayatis (2005): [6]
Juditsky, Lan, Nemirovski, and Shapiro (2007): [7]
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1 Idea behind MDM (continuous time) [1]

Consider a primal-dual method, that is MDM:

) = =V f(z(t), €0)=4&, (1)
r(t) = VeW(E(R)), t=0. (2)

Here:
e fisa convex function to be minimized in Banach space F,

e IV is a uniform differentiable, convex function on dual
space £™ .



For instance, “Euclidean” case of

W(E) = 3l
gives a well-known standard gradient method
2(t) = =V, f(z(t)).
Let us look at a simple analysis as follows. Assume
r* = argmin f(x).
Then we have a candidate Lyapunov function

W*(g) = W(S)_ < 5737* >



since

AW, (£(1))

- = <), VeW () — 2" > (3)
= — <V, f( (1)), x(t) — ™ > (4)
< fz%) = f(z(?)) (5)
< 0, (6)

decreases along the trajectory {£(%)}.

N——

that is function W.

W. (€
Furthermore, (3)—(5)

lead to

AW (£(1)
dt - )

fla(t) = f(z*) < <€(t),a" >~



and, assuming that

and integrating by ¢t € [0, 7], we get

T
| fa-Ts6)
0
< V(z")
with the Legendre transformation

V(z) = Stglp{< & x> —W(E)}.

A
A
™
=
-
v
|
=
™
=
@



Now, introduce the average estimate

By Jensen’s inequality, due to convexity of f(x), egs (8)—(9)
lead to

V(z"). (10)
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Resume:

e Function W : E* — R is a parameter of MDM which
ensures the Lyapunov function W, : E* — R; in
particular, MDM reduces to standard gradient method;
therefore, this additional degree of freedom may improve
the accuracy algorithm, at least potentially.

e MDM leads to the average estimate Z(?), i.e. time-average

to current estimates over the time interval [0, ¢].

11



e Non-asymptotical upper bound on difference between
current estimation function f(x(¢)) and function minimum
f(x*) is ensured; this upper bound is of type O(T~!), and
it is directly depending on V' (x*); therefore, the given
class function has to ensure the finite upper bound
sup V' (x). (Thus, further consideration is reduced to
function minimization over a given compact convex set.)

e The previous consideration shows the role of Legendre

transformation.
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2 A Generalized View-Point

Proxy functions. Denote by E the space R™ with a norm
||| and by E* the dual space which is RM equipped with the

conjugate (dual) norm

|2]|, = max 210, Vze& E*
T ell=

Let © be a convex, closed set in E. For a given
parameter 5 > 0 and a convex function V : 0 — R, we
call [-conjugate function of V' the Legendre—Fenchel type

transform of [SV:

Vze B, Ws(z) = 21615 {—2"0—-8V(0)} . (11)

13



Assumption (L). A convex function V : © — R s such

that its B-conjugate Wy is continuously differentiable on E*
and its gradient Wy satisfies

1
IVWa(2) = VWs(2)| € 5lle =2l Veze B 8>0

where o > 0 is a constant independent of [.

14



Assumption (L) relates to the strong convexity w.r.t. initial
norm || - ||:

V(sz+(1=s)y) < sV(@)+ (L= )V (y) - Fs(1—s)e —y|
(12)
for all x,y € © and any s € [0, 1].

The following proposition sums up some properties
of [-conjugates and, in particular, yields a sufficient
condition for Assumption (L).

15



Proposition 1. Let function V : © — R be convex
and 3> 0. Then, the B-conjugate W3 of V has the
following properties.

1. The function Wgs: E* — R is convex and has a
conjugate BV, i.e.,

Ve O, BV(A)=sup {—2"0—W;s(2)}.

ze B*

2. If function 'V is «-strongly convex with respect to the
initial norm || - || then
(i) Assumption (L) holds true,
(ii) ar%ngax [—2"0—BV(0)} = —-VW;s(z) € 0.
c

16



Definition 1. We call V : © — R, proxy function ifitis
convex, and

(i) there exists a point 6, € © such

that min V(0) = V(6.) .
0cO

(ii) Assumption (L) holds true.

17



Example 1: Consider Euclidean space RM as set © = RV
Then half of the squared Euclidean norm be related

proxy-function
1
V(d) = : 101>, 6 RM.

Indeed, minimum point 8, = 0 € R™ the function is strongly
convex w.r.t. the Euclidean norm, and the constant of strong
convexity o« = 1. Evidently, £* = FE, a 5-conjugate function

1
28
with VIVs(2) = 2/5. O

Ws(z) Izl*, zeRY

18



Example 2: Let set © in the previous Example be Euclidean
r-ball with the center at the origin, » > 0. The same
proxy-function leads to the related S-conjugate function as

follows: Vz € RM,

25 112117, |z[| < B,
Wps(2) = { i

rl|z|| — grz, otherwise.

The gradient

5% |z]] < 7B,

VIWs(z) = { ’

rz/||z]|, otherwise;

it realizes the metric projection onto ball B, 3.

19



Example 3: Consider a standard simplex © = ©,, and an
entropy-type proxy function

M : :
V(0) = In(M) + ijl 99) 1n o) (13)

(where 01n 0 = 0) which has a single minimizer
0. = (1/M,...,1/M)" with V(6,) = 0.

Let the initial norm in R™ be 1-norm

M :
oll, =3 109, o erM.

20



Therefore, the initial space is £ = ¢}, and the dual space
E* = (M is RM equipped with the sup-norm

12|l = max 270 = max [zV)|, Vze E*
161, =1 1<j<M

It is directly checked that this function is a-strongly convex
w.r.t. the 1-norm, with the parameter

a=1.

This leads to a 8-conjugate function, that is exponential
potential,

M

Ws(z) = In (% Zez(k>/5> , z€RM (14)

k=1

21



with partial derivatives relating to a Gibbs distribution on the
coordinates of vector z = (z(M), ..., 2T with 3 being a
“temperature’ parameter:

M —1
_8Wﬂ(z) _ e—z(j)/ﬁ (Z ez(k)/5> , ] _ 17 N .,M. (15)

5’z(]) P—

[]

22



Convex Stochastic Optimization Problem

AO)2EQ(0,2) — 2%18

with loss function () : © x Z — R, being such that the
random function Q(-,7):©® — R, is convex a.s., on a
convex closed set © C RM.

Let a learning sample be given in the form of an i.i.d.

sequence (Z1,...,7Z;_1), where each Z; has the same
distribution as 7.

23



Denote stochastic subgradients
w(0) = V,Q0,7), i=12,..., (16)

which are measurable functions on © x Z such that, for
any 0 € O, the expectation Ewu;(6) belongs to the
subdifferential of the function A(#).

24



Mirror Descent Algorithm (MDA)

The algorithm is defined as follows:

o Fix the initial value (;, = 0 € R™,

e Fori=1,...,t— 1, do the recursive update
G = Gi—1+7ui(fiz1)
(17)
(973 — —VWQZ(CZ) '

e QOutput at iteration t the following convex combination:
t t —1
0r = Z%Qi—l (Z %‘) : (18)
i=1 i=1

25



A Particular Case of the Algorithm
Let

=1, Bi=pvi+l (i>1), [o>0. (19)

Then the algorithm becomes simpler and can be implemented
in the following recursive form:

G = G-1+ui(ti-1), (20)
N . 1 /~ |
b = Bia—= (B —6), i=12..., (22

with initial value (, = 0.

26



Theorem 0. Assume that

sup R (|V, Q(0, 2) |12, < Lé g (23)
0O
where Lo g € (0,400). Introduce norms || - || = - ||, and
-, =" |l.., and let V' be a proxy function on ©

satisfying Assumption (L) with a parameter « > 0, and

assume that there exists 6% € Argmin A(#). Furthermore,
0O

let V(0%) <V < +o0, and we set By = Lo g (aV )71/2,

27



Then, with sequences (;);>1 and (5;);>1 from (19), for any
integer t > 1, the estimate 6, being defined in (17)—(18) with
stochastic subgradients (16) satisfies inequality

~ . 12 vE+1
E A(6;) — min A(9) <2Lgg (o 'V) ay (24)
In particular, if © is a convex compact set, we can take
V =maxV(0). ]

0O
Proof: see [6].
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3 Main Eigenvalue Estimation to a
Stochastic Matrix.

Let A = ||ai;||nxn be a given left stochastic matrix, N be a
large number. Denote O C RY, the standard simplex.

Our goal: We are to approximate a positive solution to a
linear system equations

Ar =z, x€O0Oy. (25)

Motivation: Calculations for PageRank problem.
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Notations

o Let Ay be a set of all left stochastic NV x N-matrices A.
e AU) and Ay mean j-column and é-row in the matrix A.

e Given a matrix A € Ay, define set

X, 2 Argmin ||Az — z||s = {z € Oy : Ax =z} (26)

rEO N

being convex compact of all solutions z, € X, .

e Define risk functions
1
Ra(@) & oAz —cff, zeRY, (1)

Qulz) = ||Azx—2z|2, xRN, (28)

=
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Related Optimization Problem

Minimize risk function R 4(z) on simplex Oy . This gives

VeRa(z) = ATAx — Alo — Az + 2. (29)

Stochastic Gradients by Randomization

On iteration k¥ > 1, one can prove

E (G| 21, 1k) = Va Ra(@)],_,. (30)

where z; means the result of " iteration, t =1,...,k,

Cp = (A@k))T - (Amk))T — A" 4 3y (31)
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having the two random indexes & ,mr € {1,..., N} with
P(p=7|a1,....,¢0) =2, j=1,...,N,  (32)

and

P&k =1|x1,m,. .., %%,M) = ag,., t=1,...,N. (33)

Important bounds hold

T T
1€ | oo | (Aen) — (A lloo + llzk — A (34)
9. (35)

VANVA
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Optimization MD Algorithms

e Fix 7y € O and 1y = 0 € RY. Fix positive (7 )r>1,
(Br)x>1, and horizon n > 1.

e For k=0,...,n— 1 generate 1 and & by (32) and (33);
then calculate stochastic gradient (;, (31), and iterate

Y = VYr—1+ Yl

(36)
L = _vwﬂk (W) .
e Output n'" iteration of convex combination

ZZ:1 Vi
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Here function Wjs(z) and its gradient VWW;3(+) being Gibbs
potential are as follows: Vz € RY |

Ws(z) = Bln (% Zez(‘%) , (38)

k=1

0z(7)
k=1

1
OWs(z) .0 al L) |
Bj = —e#/P Ze /B 7 =1,...,N39)

Remark: Another conjugate function Wj(z) = 2]|2||2 would
give VIW;3(2) = Bz which leads to an ordinary stochastic
gradient algorithm (projected SA) with time averaging. Cf
Polyak—Juditsky SA with averaging.
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Main Results I: Uniform Upper Bounds

Theorem 1. Let N > 2, and let estimation x,, be defined by

randomized algorithm (36)—(39) with stochastic gradient
(31) and the parameters

=1, Br=0Bk+1, Bo=2(InN)"Y2  (40)

Then, under arbitrary iteration number n > 1, one holds

V 1
E|AZ, — 2.2 <8(nN)V2 YT~ (41)
n
Remark: The projected SA would give Upper Bound like
O(N/n), instead of O(+/In N/n) (41). For instance,

condition y/(In N)/n > N/n implies n > N?/(In N).
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4 Multi-Armed Bandit Problem.

Presented at the 17th IFAC World Congress:

1. Juditsky, A., A.V. Nazin, A.B. Tsybakov, N. Vayatis.
Gap-free Bounds for Stochastic Multi-Armed Bandit.

Proc. 17th IFAC World Congress, Seoul, Korea, 6—11 July
2008, pp.11560-11563.
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Let X = {x(1),...,2(N)} be a set of NV available actions. At
each time t =1,2,..., we have to choose sequentially an
action x; € X. We denote by 7, the observable
(instantaneous) loss for the choice of x;, and introduce the
average loss up to horizon 1" which is to be minimized:

T
1
Oy = T;m' (42)
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A strategy U is a sequence of rules for the choice z; at times
t =1,...,T. In the stochastic setup that we consider here,
the sequence of losses (7;);>1 is a stochastic process and x; is
a measurable function (random, in general) depending only on
the vector of past decisions and losses

(xla ceey L1531y - - 77715—1)-
Any strategy U generates a flow of o-algebras
Fi=0cf{x,...,z5;m,...,mF, t > 1 (for brevity we do not

indicate the dependence of F; on U). Throughout the paper
we denote by z\9) the jth component of vector z € RY.
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Two basic assumptions:
A1l. With probability 1, the conditional expectations satisty
E{n | Fi1, s =x(k)}=ag, k=1,... N, (43)
where ar € R are unknown deterministic values.

The value a;, characterizes the expected loss for deciding to
take the action x; = x(k) at time ¢t. Assumption Al says that
this loss should not depend on ¢.

A2. The second conditional moment of the loss 7; is a.s.
bounded by a constant:

E{n? | Fie1, 2} < 0° < 00. (44)
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It is easy to prove (see, e.g., [12]) that under these
assumptions all the limiting points of the average loss
sequence (®;);>1 cannot be almost surely (a.s.) less than

A .
Amin — k—I{HnN ag .

Thus, the problem is to design a strategy U/* which has the
asymptotically minimal average loss:

Or — apin as T — 00, (45)

in an appropriate probability sense.
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We study here convergence in mean, trying to get the rate of
convergence

E((I)T) — Qmin

as fast as possible.
In particular, we provide non-asymptotic upper bounds for the
expected excess risk E(®7) — a,;, that are close, up to

logarithmic factors, to the lower bound of the order /N /T
proved for arbitrary N by (see Theorem 6.11 in [14]).
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We will suppose that the following assumption on the loss
sequence (7;);>1 holds:

A3. The losses are nonnegative: n, > 0 a.s.

Below we propose a randomized decision strategy in which, at

each step t 4+ 1, the action x;,; is drawn according to a

>
distribution p; = (pgl), . ,pﬁN)) over X where:

pi 2 P(wyy = a(k) | F), k=1,...,N. (46)

The update of the distribution p; over time is given by the
MDA.

42



Denote by © the simplex of all probability vectors over X:
A NN k) }
@—{pGRJF‘Zk:lp ~11 (47)

We then define the mean (over the set of actions) loss
function A on ©:

N
Alp) => awp™® =a'p, peo, (48)
k=1
where a = (ay,...,ay)". Since p; is a random vector, the

quantity A(p;) is a random variable. The update rule for the
probability distribution p; uses a stochastic gradient of A.
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The expected average loss equals to the average over time of
the expectations [EA(p;), that is

E(®r) = 7 > B(E( | Fir) = 7 3 EAp-).
(49)

~

Theorem. Let assumptions AI-A3 be satisfied and let the
conditional distributions (p;);>o be defined by the MDA.
Then, for any horizon T > 1,

V(T +1)NIn N

E(®r) — amnin < 20 i

(50)
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The MD algorithm for multi-armed bandit.
1. Fixpo=(N"1,..., N and {, =0 € R".
2. Fort=1,... T

(a) draw an action z; = x(k;) with random k; distributed
according to p;_1;

(b) compute the stochastic gradient

ui(pe1) =~ en(kr); (51)

Pi—1

(c) update the dual and probability vectors

G = Go1+ M (pi—1), (52)
pe = —VW5(G). (53)
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3. At horizon t = T, output a sequence of actions

(ZCl, ce ,ZCT).

The tuning parameters ~; and (3, are as follows: Vt > 1,

=1, Bii1=PBoVt, Po=0y/N/(InN). (54)

Notice that

IE{ s en (k) ]-“tl} —a=VAp ). (55
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Remark: The known information lower bound (see [14],
Theorem 6.11) differs from the upper bound (50) by

logarithmic term vIn V.
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5 Conclusions.

See another problems, for instance:

e Robust PageRank [Polyak and Juditsky (CDC 2012)]:
f(x) = || Az]2 + €|

9 — min ,
TEO N

where ¢ > 0 is given, O stands for standard simplex in
RN, A= P — I, Pis a given stochastic N x N-matrix, [
is the identical matrix.

e Classification (pattern recognition) [6]

e Control of finite Markov chains [16], [17].

48



Cnucok JjmurepaTyphbl

[1] Nemirovskii, A.S. and Yudin, D.B., Slozhnost’ zadach i

effektivnost’ metodov optimizatsii, Moscow: Nauka, 1979
(in Russian). Translated under the title Problem

Complexity and Method Efficiency in Optimization,
Chichester: Wiley, 1983.

[2] A. Ben-Tal, T. Margalit, A. Nemirovski. The ordered
subsets mirror descent optimization method with
applications to tomography. SIOPT 12(1), 79-108, 2001.

[3] A. Beck, M. Teboulle. Mirror descent and nonlinear
projected subgradient methods for convex optimization.

Oper. Res. Lett. 31(3), 167-175, 2003.

49



[4] Yu. Nesterov. Primal-dual subgradient methods for convex
problems: Core discussion paper 2005/67.

Louvain-la-Neuve, Belgium: Center for Operation Research
and Econometrics, 2005.

[5] Yu. Nesterov. Primal-dual subgradient methods for convex

problems // Mathematical Programming, 2007. DOI:
10.1007/s10107-007-0149-x.

[6] A.B. Juditsky, A.V. Nazin, A.B. Tsybakov, and N. Vayatis.
Recursive aggregation of estimators by the mirror descent

algorithm with averaging. Problems of Information
Transmission, 41(4):368-384, 2005.

50



[7] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro.
Stochastic Approximation approach to Stochastic

Programming. Optimization Online, 10/03/2007
http://www.optimization-online.org/DB_HTML/2007/09/1787.html

[8] A.V. Nazin. Solution to a Particular Deterministic
Problem in Finite High Dimension by the Recursive
Randomized Mirror Descent Algorithm. 8th Meeting on
Mathematical Statistics, CIRM, Luminy, France, 2008.

[9] A.V. Nazin and B.T. Polyak. The Randomized Algorithm

for Finding an Eigenvector of the Stochastic Matrix with
Application to PageRank. Doklady Mathematics, 2009,
Vol. 79, No. 3, pp. 424-427.

o1



[10] A.V. Nazin and B.T. Polyak. Adaptive Randomized
Algorithm for Finding Eigenvector of Stochastic Matrix

with Application to PageRank. 48th IEEE Conf. on
Decision and Control, Shanghai, China, December 20009.
(Regular Paper.)

[11] A.V. Nazin. Estimating the Principal Eigenvector of a
Stochastic Matrix: Mirror Descent Algorithms via Game

Approach. 49th IEEE Conf. on Decision and Control,
December 2010. (Submitted as a Regular Paper.)

52



[12] A.V. Nazin and A.S. Poznyak. Adaptive Choice of
Variants. Nauka, Moscow, 1986, (in Russian).

[13] K. Najim and A.S. Poznyak. Learning automata: theory
and applications. Pergamon Press, Inc., Elmsford, NY,
USA, 1994. ISBN 0-08-042024-9.

[14] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and
Games. Cambridge University Press, 2006.

[15] A.V. Nazin, B.T. Polyak.
A randomized algorithm for finding the eigenvector of a
stochastic matrix with application to PageRank problem.
Automation and Remote Control, 2011, vol. 72, no. 2,
pp. 342-352.)

53



[16] Nazin, A.V., B.M. Miller. Mirror Descent Algorithm for
Homogeneous Finite Controlled Markov Chains with
Unknown Mean Losses. Proc. 18th IFAC World Congress,
Milano, Italy, August 28 — September 2, 2011.

[17] Nazin, A.V., B.M. Miller. The Mirror Descent Control
Algorithm for Weakly Regular Homogeneous Finite
Markov Chains with Unknown Mean Losses. The 50th
IEEE Conference on Decision and Control and European

Control Conference, December 12—-15, 2011, Orlando,
Florida USA.

54



THANK YOU FOR YOUR ATTENTION !



