Метод зеркального спуска в ряде выпуклых задачах оптимизации и управления

А.В. НАЗИН

Институт проблем управления РАН nazine@ipu.ru, anazine@rambler.ru

Совместно с А.Б. Юдицким, А.Б. Цыбаковым, N. Vayatis, и Б.Т. Поляком

Математический кружок ФУПМ МФТИ (ГУ), 6 ноября 2012 г.

План

1. Краткое введение. Идея МЗС (в непрерывном времени) и некоторые его свойства.

Роль преобразования Лежандра, функции Ляпунова, дополнительное усреднение траектории исходного пространства. Оценка скорости сходимости по оптимизируемой функции. Некоторые выводы.

План (продолжение 1)

2. Общие понятия, объекты и конструкции: исходная и двойственная норма, прокси-функция на заданном выпуклом компакте и ее сопряженная (преобразование Лежандра-Фенхеля), их свойства (при условии сильной выпуклости).

Примеры: "евклидовые" случаи как во всем пространстве, так и в шаре, и энтропийная прокси-функция на стандартном симплексе и потенциал Гиббса.

План (продолжение 2)

- 3. Выпуклая задача стохастической оптимизации (и ее детерминированный случай). Стохастический субградиент и алгоритм ЗС, его верхняя граница (скорость сходимости).
- 4. Приложение МЗС к следующим задачам:
- 1) оценивание главного вектора стохастической матрицы,
- 2) многорукий бандит.
- 5. Заключение.
- 6. Краткий список литературы.

Introduction

Mirror Descent Method (MDA) is a gradient-type recursive method for convex optimization, i.e. primal-dual method performing the descent in a dual space and mapping the resulted points to a primal space. See the following references:

- 1. Nemirovski and Yudin (1979/1983): [1]
- 2. Ben-Tal, Margalit, and Nemirovski (2001): [2]
- 3. Beck and Teboulle (2003): [3]
- 4. Nesterov (2005, 2007): [4], [5]
- 5. Juditsky, Nazin, Tsybakov, and Vayatis (2005): [6]
- 6. Juditsky, Lan, Nemirovski, and Shapiro (2007): [7]

1 Idea behind MDM (continuous time) [1]

Consider a primal-dual method, that is MDM:

$$\dot{\xi}(t) = -\nabla_x f(x(t)), \quad \xi(0) = \xi_0, \qquad (1)$$

$$x(t) = \nabla_{\xi} W(\xi(t)), \quad t \ge 0.$$
 (2)

Here:

- \bullet f is a convex function to be minimized in Banach space E,
- $\bullet \ \ W$ is a uniform differentiable, convex function on dual space E^* .

For instance, "Euclidean" case of

$$W(\xi) = \frac{1}{2} \|\xi\|_2^2$$

gives a well-known standard gradient method

$$\dot{x}(t) = -\nabla_x f(x(t)).$$

Let us look at a simple analysis as follows. Assume

$$x^* = \arg\min f(x).$$

Then we have a candidate Lyapunov function

$$W_*(\xi) \triangleq W(\xi) - \langle \xi, x^* \rangle,$$

since

$$\frac{dW_*(\xi(t))}{dt} = \langle \dot{\xi}(t), \nabla_{\xi} W(\xi(t)) - x^* \rangle$$
 (3)

$$= - < \nabla_x f(x(t)), x(t) - x^* >$$
 (4)

$$\leq f(x^*) - f(x(t)) \tag{5}$$

$$\leq 0,$$
 (6)

that is function $W_*(\xi)$ decreases along the trajectory $\{\xi(t)\}$. Furthermore, (3)–(5) lead to

$$f(x(t)) - f(x^*) \le \langle \dot{\xi}(t), x^* \rangle - \frac{dW(\xi(t))}{dt},$$
 (7)

and, assuming that

$$\xi(0) = 0, \quad W(0) = 0,$$

and integrating by $t \in [0, T]$, we get

$$\int_{0}^{T} f(x(t))dt - Tf(x^{*}) \leq \langle \xi(T), x^{*} \rangle - W(\xi(T)) (8)$$

$$\leq V(x^{*}) \tag{9}$$

with the Legendre transformation

$$V(x) \triangleq \sup_{\xi} \{ \langle \xi, x \rangle - W(\xi) \}.$$

Now, introduce the average estimate

$$\widehat{x}(T) \triangleq \frac{1}{T} \int_0^T x(t)dt$$
.

By Jensen's inequality, due to convexity of f(x), eqs (8)–(9) lead to

$$f(\widehat{x}(T)) - f(x^*) \leq \frac{1}{T} V(x^*). \tag{10}$$

Resume:

- Function $W: E^* \to \mathbb{R}$ is a parameter of MDM which ensures the Lyapunov function $W_*: E^* \to \mathbb{R}$; in particular, MDM reduces to standard gradient method; therefore, this additional degree of freedom may improve the accuracy algorithm, at least potentially.
- MDM leads to the average estimate $\widehat{x}(t)$, i.e. time-average to current estimates over the time interval [0, t].

- Non-asymptotical upper bound on difference between current estimation function $f(\widehat{x}(t))$ and function minimum $f(x^*)$ is ensured; this upper bound is of type $O(T^{-1})$, and it is directly depending on $V(x^*)$; therefore, the given class function has to ensure the finite upper bound $\sup V(x)$. (Thus, further consideration is reduced to function minimization over a given compact convex set.)
- The previous consideration shows the role of Legendre transformation.

2 A Generalized View-Point

Proxy functions. Denote by E the space \mathbb{R}^M with a norm $\|z\|$ and by E^* the dual space which is \mathbb{R}^M equipped with the conjugate (dual) norm

$$||z||_* = \max_{\|\theta\|=1} z^T \theta, \quad \forall z \in E^*.$$

Let Θ be a convex, closed set in E. For a given parameter $\beta>0$ and a convex function $V:\Theta\to\mathbb{R}$, we call β -conjugate function of V the Legendre–Fenchel type transform of βV :

$$\forall z \in E^*, \quad W_{\beta}(z) = \sup_{\theta \in \Theta} \left\{ -z^T \theta - \beta V(\theta) \right\}. \tag{11}$$

Assumption (L). A convex function $V: \Theta \to \mathbb{R}$ is such that its β -conjugate W_{β} is continuously differentiable on E^* and its gradient ∇W_{β} satisfies

$$\|\nabla W_{\beta}(z) - \nabla W_{\beta}(\tilde{z})\| \le \frac{1}{\alpha\beta} \|z - \tilde{z}\|_*, \quad \forall z, \tilde{z} \in E^*, \ \beta > 0,$$

where $\alpha > 0$ is a constant independent of β .

Assumption (L) relates to the strong convexity w.r.t. *initial* norm $\|\cdot\|$:

$$V(sx + (1-s)y) \le sV(x) + (1-s)V(y) - \frac{\alpha}{2}s(1-s)||x-y||^2$$
(12)

for all $x, y \in \Theta$ and any $s \in [0, 1]$.

The following proposition sums up some properties of β -conjugates and, in particular, yields a sufficient condition for Assumption (L).

Proposition 1. Let function $V: \Theta \to \mathbb{R}$ be convex and $\beta > 0$. Then, the β -conjugate W_{β} of V has the following properties.

1. The function $W_{\beta}: E^* \to \mathbb{R}$ is convex and has a conjugate βV , i.e.,

$$\forall \theta \in \Theta, \quad \beta V(\theta) = \sup_{z \in E^*} \left\{ -z^T \theta - W_{\beta}(z) \right\}.$$

- 2. If function V is α -strongly convex with respect to the initial norm $\|\cdot\|$ then
 - (i) Assumption (L) holds true,

(ii)
$$\underset{\theta \in \Theta}{\operatorname{argmax}} \left\{ -z^T \theta - \beta V(\theta) \right\} = -\nabla W_{\beta}(z) \in \Theta$$
.

Definition 1. We call $V: \Theta \to \mathbb{R}_+$ proxy function if it is convex, and

- (i) there exists a point $\theta_* \in \Theta$ such that $\min_{\theta \in \Theta} V(\theta) = V(\theta_*)$,
- (ii) Assumption (L) holds true.

Example 1: Consider Euclidean space \mathbb{R}^M as set $\Theta = \mathbb{R}^M$. Then half of the squared Euclidean norm be related proxy-function

$$V(\theta) = \frac{1}{2} \|\theta\|^2, \quad \theta \in \mathbb{R}^M.$$

Indeed, minimum point $\theta_*=0\in\mathbb{R}^M$, the function is strongly convex w.r.t. the Euclidean norm, and the constant of strong convexity $\alpha=1$. Evidently, $E^*=E$, a β -conjugate function

$$W_{\beta}(z) = \frac{1}{2\beta} \|z\|^2, \quad z \in \mathbb{R}^M$$

with $\nabla W_{eta}(z) = z/eta$.

Example 2: Let set Θ in the previous Example be Euclidean r-ball with the center at the origin, r>0. The same proxy-function leads to the related β -conjugate function as follows: $\forall z \in \mathbb{R}^M$,

$$W_{\beta}(z) = \begin{cases} \frac{1}{2\beta} ||z||^2, & ||z|| \le r\beta, \\ r||z|| - \frac{\beta}{2} r^2, & \text{otherwise.} \end{cases}$$

The gradient

$$\nabla W_{\beta}(z) = \begin{cases} \frac{1}{\beta} z, & ||z|| \le r\beta, \\ rz/||z||, & \text{otherwise;} \end{cases}$$

it realizes the metric projection onto ball $B_{r\beta}$.

Example 3: Consider a standard simplex $\Theta = \Theta_M$ and an entropy-type proxy function

$$V(\theta) = \ln(M) + \sum_{j=1}^{M} \theta^{(j)} \ln \theta^{(j)}$$
 (13)

(where $0 \ln 0 \triangleq 0$) which has a single minimizer $\theta_* = (1/M, \dots, 1/M)^T$ with $V(\theta_*) = 0$.

Let the initial norm in \mathbb{R}^M be 1-norm

$$\|\theta\|_1 = \sum_{j=1}^M |\theta^{(j)}|, \quad \theta \in \mathbb{R}^M.$$

Therefore, the initial space is $E=\ell_1^M$, and the dual space $E^*=\ell_\infty^M$ is \mathbb{R}^M equipped with the sup-norm

$$||z||_{\infty} = \max_{\|\theta\|_1 = 1} z^T \theta = \max_{1 \le j \le M} |z^{(j)}|, \quad \forall z \in E^*.$$

It is directly checked that this function is α -strongly convex w.r.t. the 1-norm, with the parameter

$$\alpha = 1$$
.

This leads to a β -conjugate function, that is exponential potential,

$$W_{\beta}(z) = \beta \ln \left(\frac{1}{M} \sum_{k=1}^{M} e^{-z^{(k)}/\beta} \right), \quad z \in \mathbb{R}^{M},$$
 (14)

with partial derivatives relating to a Gibbs distribution on the coordinates of vector $z=(z^{(1)},\ldots,z^{(M)})^T$, with β being a "temperature" parameter:

$$-\frac{\partial W_{\beta}(z)}{\partial z^{(j)}} = e^{-z^{(j)}/\beta} \left(\sum_{k=1}^{M} e^{-z^{(k)}/\beta} \right)^{-1}, \ j = 1, \dots, M. \ (15)$$

Convex Stochastic Optimization Problem

$$A(\theta) \triangleq \mathbb{E} Q(\theta, Z) \to \min_{\theta \in \Theta}$$

with loss function $Q: \Theta \times \mathcal{Z} \to \mathbb{R}_+$ being such that the random function $Q(\cdot, Z): \Theta \to \mathbb{R}_+$ is convex a.s., on a convex closed set $\Theta \subset \mathbb{R}^M$.

Let a learning sample be given in the form of an i.i.d. sequence (Z_1, \ldots, Z_{t-1}) , where each Z_i has the same distribution as Z.

Denote stochastic subgradients

$$u_i(\theta) = \nabla_{\theta} Q(\theta, Z_i), \quad i = 1, 2, \dots,$$
 (16)

which are measurable functions on $\Theta \times \mathcal{Z}$ such that, for any $\theta \in \Theta$, the expectation $\mathbb{E} u_i(\theta)$ belongs to the subdifferential of the function $A(\theta)$.

Mirror Descent Algorithm (MDA)

The algorithm is defined as follows:

- Fix the initial value $\zeta_0 = 0 \in \mathbb{R}^M$.
- For i = 1, ..., t 1, do the recursive update

$$\zeta_{i} = \zeta_{i-1} + \gamma_{i} u_{i}(\theta_{i-1}),$$

$$\theta_{i} = -\nabla W_{\beta_{i}}(\zeta_{i}).$$

$$(17)$$

• Output at iteration t the following convex combination:

$$\widehat{\theta}_t = \sum_{i=1}^t \gamma_i \theta_{i-1} \left(\sum_{i=1}^t \gamma_i \right)^{-1} . \tag{18}$$

A Particular Case of the Algorithm

Let

$$\gamma_i \equiv 1, \quad \beta_i = \beta_0 \sqrt{i+1} \quad (i \ge 1), \quad \beta_0 > 0.$$
 (19)

Then the algorithm becomes simpler and can be implemented in the following recursive form:

$$\zeta_i = \zeta_{i-1} + u_i(\theta_{i-1}) , \qquad (20)$$

$$\theta_i = -\nabla W_{\beta_i}(\zeta_i) , \qquad (21)$$

$$\widehat{\theta}_i = \widehat{\theta}_{i-1} - \frac{1}{i} \left(\widehat{\theta}_{i-1} - \theta_{i-1} \right), \quad i = 1, 2, \dots, \quad (22)$$

with initial value $\zeta_0 = 0$.

Theorem 0. Assume that

$$\sup_{\theta \in \Theta} \mathbb{E} \|\nabla_{\theta} Q(\theta, Z)\|_{\infty}^{2} \le L_{\Theta, Q}^{2} , \qquad (23)$$

where $L_{\Theta,Q} \in (0,+\infty)$. Introduce norms $\|\cdot\| = \|\cdot\|_1$ and $\|\cdot\|_* = \|\cdot\|_\infty$, and let V be a proxy function on Θ satisfying Assumption (L) with a parameter $\alpha > 0$, and assume that there exists $\theta_A^* \in \underset{\theta \in \Theta}{\operatorname{Argmin}} A(\theta)$. Furthermore, let $V(\theta_A^*) \leq \overline{V} < +\infty$, and we set $\beta_0 = L_{\Theta,Q} (\alpha \, \overline{V})^{-1/2}$.

Then, with sequences $(\gamma_i)_{i\geq 1}$ and $(\beta_i)_{i\geq 1}$ from (19), for any integer $t\geq 1$, the estimate $\widehat{\theta}_t$ being defined in (17)–(18) with stochastic subgradients (16) satisfies inequality

$$\mathbb{E} A(\widehat{\theta}_t) - \min_{\theta \in \Theta} A(\theta) \le 2 L_{\Theta,Q} \left(\alpha^{-1} \overline{V} \right)^{1/2} \frac{\sqrt{t+1}}{t} . \tag{24}$$

In particular, if Θ is a convex compact set, we can take

$$\overline{V} = \max_{\theta \in \Theta} V(\theta).$$

Proof: see [6].

3 Main Eigenvalue Estimation to a Stochastic Matrix.

Let $A = ||a_{ij}||_{N \times N}$ be a given left stochastic matrix, N be a large number. Denote $\Theta_N \subset \mathbb{R}^N$, the standard simplex.

Our goal: We are to approximate a positive solution to a linear system equations

$$Ax = x \,, \quad x \in \Theta_N \,. \tag{25}$$

Motivation: Calculations for PageRank problem.

Notations

- Let A_N be a set of all left stochastic $N \times N$ -matrices A.
- $A^{(j)}$ and $A_{(i)}$ mean j-column and i-row in the matrix A.
- Given a matrix $A \in \mathcal{A}_N$, define set

$$X_* \triangleq \underset{x \in \Theta_N}{\text{Arg min}} \|Ax - x\|_2 = \{x \in \Theta_N : Ax = x\}$$
 (26)

being convex compact of all solutions $x_* \in X_*$.

Define risk functions

$$\mathcal{R}_A(x) \triangleq \frac{1}{2} ||Ax - x||_2^2, \quad x \in \mathbb{R}^N, \qquad (27)$$

$$Q_A(x) \triangleq ||Ax - x||_2, \quad x \in \mathbb{R}^N.$$
 (28)

Related Optimization Problem

Minimize risk function $\mathcal{R}_A(x)$ on simplex Θ_N . This gives

$$\nabla_x \mathcal{R}_A(x) = A^T A x - A^T x - A x + x. \tag{29}$$

Stochastic Gradients by Randomization

On iteration $k \geq 1$, one can prove

$$\mathbb{E}\left(\zeta_k \mid x_1, \dots, x_k\right) = \left. \nabla_x \, \mathcal{R}_A(x) \right|_{x = x_k} \,, \tag{30}$$

where x_t means the result of $t^{ ext{th}}$ iteration, $t=1,\ldots,k$,

$$\zeta_k \triangleq \left(A_{(\xi_k)}\right)^T - \left(A_{(\eta_k)}\right)^T - A^{(\eta_k)} + x_k; \tag{31}$$

having the two random indexes $\xi_k, \eta_k \in \{1, \dots, N\}$ with

$$\mathbb{P}(\eta_k = j \mid x_1, \dots, x_k) = x_k^{(j)}, \quad j = 1, \dots, N,$$
 (32)

and

$$\mathbb{P}(\xi_k = i \mid x_1, \eta_1, \dots, x_k, \eta_k) = a_{i\eta_k}, \quad i = 1, \dots, N. \quad (33)$$

Important bounds hold

$$\|\zeta_k\|_{\infty} \leq \|(A_{(\xi_k)})^T - (A_{(\eta_k)})^T\|_{\infty} + \|x_k - A^{(\eta_k)}\|_{\infty} (34)$$

$$\leq 2. \tag{35}$$

Optimization MD Algorithms

- Fix $x_0 \in \Theta_N$ and $\psi_0 = 0 \in \mathbb{R}^N$. Fix positive $(\gamma_k)_{k \geq 1}$, $(\beta_k)_{k > 1}$, and horizon n > 1.
- For k = 0, ..., n-1 generate η_k and ξ_k by (32) and (33); then calculate stochastic gradient ζ_k (31), and iterate

$$\psi_k = \psi_{k-1} + \gamma_k \zeta_k,
x_k = -\nabla W_{\beta_k}(\psi_k).$$
(36)

ullet Output $n^{
m th}$ iteration of convex combination

$$\widehat{x}_n = \frac{\sum_{k=1}^n \gamma_k x_{k-1}}{\sum_{k=1}^n \gamma_k}.$$
 (37)

Here function $W_{\beta}(z)$ and its gradient $\nabla W_{\beta}(\cdot)$ being Gibbs potential are as follows: $\forall z \in \mathbb{R}^N$,

$$W_{\beta}(z) = \beta \ln \left(\frac{1}{N} \sum_{k=1}^{N} e^{-z^{(k)}/\beta} \right),$$
 (38)

$$\frac{\partial W_{\beta}(z)}{\partial z^{(j)}} = -e^{-z^{(j)}/\beta} \left(\sum_{k=1}^{N} e^{-z^{(k)}/\beta} \right)^{-1}, \ j = 1, \dots, N39$$

Remark: Another conjugate function $W_{\beta}(z) = \frac{\beta}{2}||z||_2^2$ would give $\nabla W_{\beta}(z) = \beta z$ which leads to an ordinary stochastic gradient algorithm (projected SA) with time averaging. Cf Polyak–Juditsky SA with averaging.

Main Results I: Uniform Upper Bounds

Theorem 1. Let $N \geq 2$, and let estimation \widehat{x}_n be defined by randomized algorithm (36)–(39) with stochastic gradient ζ_k (31) and the parameters

$$\gamma_k \equiv 1, \quad \beta_k = \beta_0 \sqrt{k+1}, \quad \beta_0 = 2(\ln N)^{-1/2}.$$
 (40)

Then, under arbitrary iteration number $n \geq 1$, one holds

$$\mathbb{E} \|A\widehat{x}_n - \widehat{x}_n\|_2^2 \le 8 (\ln N)^{1/2} \frac{\sqrt{n+1}}{n}. \tag{41}$$

Remark: The projected SA would give Upper Bound like O(N/n), instead of $O(\sqrt{\ln N/n})$ (41). For instance, condition $\sqrt{(\ln N)/n} \geq N/n$ implies $n \geq N^2/(\ln N)$.

4 Multi-Armed Bandit Problem.

Presented at the 17th IFAC World Congress:

1. Juditsky, A., A.V. Nazin, A.B. Tsybakov, N. Vayatis. Gap-free Bounds for Stochastic Multi-Armed Bandit. *Proc. 17th IFAC World Congress, Seoul, Korea, 6–11 July 2008, pp.11560–11563*.

Let $X = \{x(1), \ldots, x(N)\}$ be a set of N available actions. At each time $t = 1, 2, \ldots$, we have to choose sequentially an action $x_t \in X$. We denote by η_t the observable (instantaneous) loss for the choice of x_t , and introduce the average loss up to horizon T which is to be minimized:

$$\Phi_T = \frac{1}{T} \sum_{t=1}^{T} \eta_t \,. \tag{42}$$

A strategy \mathcal{U} is a sequence of rules for the choice x_t at times $t=1,\ldots,T$. In the stochastic setup that we consider here, the sequence of losses $(\eta_t)_{t\geq 1}$ is a stochastic process and x_t is a measurable function (random, in general) depending only on the vector of past decisions and losses

$$(x_1,\ldots,x_{t-1};\eta_1,\ldots,\eta_{t-1}).$$

Any strategy \mathcal{U} generates a flow of σ -algebras $\mathcal{F}_t = \sigma\{x_1, \ldots, x_t; \eta_1, \ldots, \eta_t\}$, $t \geq 1$ (for brevity we do not indicate the dependence of \mathcal{F}_t on \mathcal{U}). Throughout the paper we denote by $z^{(j)}$ the jth component of vector $z \in \mathbb{R}^N$.

Two basic assumptions:

A1. With probability 1, the conditional expectations satisfy

$$\mathbb{E}\{\eta_t \,|\, \mathcal{F}_{t-1} \,,\, x_t = x(k)\} = a_k, \ k = 1, \dots, N, \tag{43}$$

where $a_k \in \mathbb{R}$ are unknown deterministic values.

The value a_k characterizes the expected loss for deciding to take the action $x_t = x(k)$ at time t. Assumption A1 says that this loss should not depend on t.

A2. The second conditional moment of the loss η_t is a.s. bounded by a constant:

$$\mathbb{E}\{\eta_t^2 \mid \mathcal{F}_{t-1}, x_t\} \le \sigma^2 < \infty. \tag{44}$$

It is easy to prove (see, e.g., [12]) that under these assumptions all the limiting points of the average loss sequence $(\Phi_t)_{t>1}$ cannot be almost surely (a.s.) less than

$$a_{\min} \triangleq \min_{k=1,\dots,N} a_k$$
.

Thus, the problem is to design a strategy \mathcal{U}^* which has the asymptotically minimal average loss:

$$\Phi_T \to a_{\min} \quad \text{as} \quad T \to \infty \,, \tag{45}$$

in an appropriate probability sense.

We study here *convergence in mean*, trying to get the rate of convergence

$$\mathbb{E}(\Phi_T) \to a_{\min}$$

as fast as possible.

In particular, we provide non-asymptotic upper bounds for the expected excess risk $\mathbb{E}(\Phi_T) - a_{\min}$ that are close, up to logarithmic factors, to the lower bound of the order $\sqrt{N/T}$ proved for arbitrary N by (see Theorem 6.11 in [14]).

We will suppose that the following assumption on the loss sequence $(\eta_t)_{t>1}$ holds:

A3. The losses are nonnegative: $\eta_t \geq 0$ a.s.

Below we propose a randomized decision strategy in which, at each step t+1, the action x_{t+1} is drawn according to a distribution $p_t \triangleq \left(p_t^{(1)}, \dots, p_t^{(N)}\right)^\top$ over X where:

$$p_t^{(k)} \triangleq \mathbb{P}(x_{t+1} = x(k) \mid \mathcal{F}_t), \quad k = 1, \dots, N.$$
 (46)

The update of the distribution p_t over time is given by the MDA.

Denote by Θ the simplex of all probability vectors over X:

$$\Theta \triangleq \left\{ p \in \mathbb{R}_+^N \mid \sum_{k=1}^N p^{(k)} = 1 \right\}. \tag{47}$$

We then define the mean (over the set of actions) loss function A on Θ :

$$A(p) = \sum_{k=1}^{N} a_k p^{(k)} = a^{\mathsf{T}} p, \quad p \in \Theta,$$
 (48)

where $a = (a_1, \dots, a_N)^{\top}$. Since p_t is a random vector, the quantity $A(p_t)$ is a random variable. The update rule for the probability distribution p_t uses a stochastic gradient of A.

The expected average loss equals to the average over time of the expectations $\mathbb{E}A(p_t)$, that is

$$\mathbb{E}(\Phi_T) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}(\mathbb{E}(\eta_t \mid x_t, \mathcal{F}_{t-1})) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}(A(p_{t-1})) .$$
(49)

Theorem. Let assumptions A1–A3 be satisfied and let the conditional distributions $(p_t)_{t\geq 0}$ be defined by the MDA. Then, for any horizon $T\geq 1$,

$$\mathbb{E}\left(\Phi_T\right) - a_{\min} \le 2\,\sigma\,\frac{\sqrt{(T+1)N\ln N}}{T}\,. \tag{50}$$

The MD algorithm for multi-armed bandit.

- 1. Fix $p_0 = (N^{-1}, \dots, N^{-1})^T$ and $\zeta_0 = 0 \in \mathbb{R}^N$.
- 2. For t = 1, ..., T:
 - (a) draw an action $x_t = x(k_t)$ with random k_t distributed according to p_{t-1} ;
 - (b) compute the stochastic gradient

$$u_t(p_{t-1}) = \frac{\eta_t}{p_{t-1}^{(k_t)}} e_N(k_t); \qquad (51)$$

(c) update the dual and probability vectors

$$\zeta_t = \zeta_{t-1} + \gamma_t u_t(p_{t-1}),$$
 (52)

$$p_t = -\nabla W_{\beta_t}(\zeta_t). \tag{53}$$

3. At horizon t = T, output a sequence of actions (x_1, \ldots, x_T) .

The tuning parameters γ_t and β_t are as follows: $\forall t \geq 1$,

$$\gamma_t \equiv 1, \quad \beta_{t-1} = \beta_0 \sqrt{t}, \quad \beta_0 = \sigma \sqrt{N/(\ln N)}.$$
 (54)

Notice that

$$\mathbb{E}\left\{\frac{\eta_t}{p_{t-1}^{(k_t)}}e_N(k_t)\middle|\mathcal{F}_{t-1}\right\} = a = \nabla A(p_{t-1}). \tag{55}$$

Remark: The known information lower bound (see [14], Theorem 6.11) differs from the upper bound (50) by logarithmic term $\sqrt{\ln N}$.

5 Conclusions.

See another problems, for instance:

• Robust PageRank [Polyak and Juditsky (CDC 2012)]:

$$f(x) \triangleq ||Ax||_2 + \varepsilon ||x||_2 \to \min_{x \in \Theta_N}$$

where $\varepsilon > 0$ is given, Θ_N stands for standard simplex in \mathbb{R}^N , A = P - I, P is a given stochastic $N \times N$ -matrix, I is the identical matrix.

- Classification (pattern recognition) [6]
- Control of finite Markov chains [16], [17].

Список литературы

- [1] Nemirovskii, A.S. and Yudin, D.B., Slozhnost' zadach i effektivnost' metodov optimizatsii, Moscow: Nauka, 1979 (in Russian). Translated under the title Problem Complexity and Method Efficiency in Optimization, Chichester: Wiley, 1983.
- [2] A. Ben-Tal, T. Margalit, A. Nemirovski. The ordered subsets mirror descent optimization method with applications to tomography. *SIOPT* 12(1), 79–108, 2001.
- [3] A. Beck, M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Oper. Res. Lett.* 31(3), 167–175, 2003.

- [4] Yu. Nesterov. Primal-dual subgradient methods for convex problems: Core discussion paper 2005/67.

 Louvain-la-Neuve, Belgium: Center for Operation Research and Econometrics, 2005.
- [5] Yu. Nesterov. Primal-dual subgradient methods for convex problems // *Mathematical Programming*, 2007. DOI: 10.1007/s10107-007-0149-x.
- [6] A.B. Juditsky, A.V. Nazin, A.B. Tsybakov, and N. Vayatis. Recursive aggregation of estimators by the mirror descent algorithm with averaging. *Problems of Information Transmission*, 41(4):368–384, 2005.

- [7] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic Approximation approach to Stochastic Programming. *Optimization Online*, 10/03/2007 http://www.optimization-online.org/DB_HTML/2007/09/1787.html
- [8] A.V. Nazin. Solution to a Particular Deterministic Problem in Finite High Dimension by the Recursive Randomized Mirror Descent Algorithm. 8th Meeting on Mathematical Statistics, CIRM, Luminy, France, 2008.
- [9] A.V. Nazin and B.T. Polyak. The Randomized Algorithm for Finding an Eigenvector of the Stochastic Matrix with Application to PageRank. *Doklady Mathematics*, 2009, Vol. 79, No. 3, pp. 424–427.

- [10] A.V. Nazin and B.T. Polyak. Adaptive Randomized Algorithm for Finding Eigenvector of Stochastic Matrix with Application to PageRank. *48th IEEE Conf. on Decision and Control*, Shanghai, China, December 2009. (Regular Paper.)
- [11] A.V. Nazin. Estimating the Principal Eigenvector of a Stochastic Matrix: Mirror Descent Algorithms via Game Approach. *49th IEEE Conf. on Decision and Control*, December 2010. (Submitted as a Regular Paper.)

- [12] A.V. Nazin and A.S. Poznyak. *Adaptive Choice of Variants*. Nauka, Moscow, 1986, (in Russian).
- [13] K. Najim and A.S. Poznyak. *Learning automata: theory and applications*. Pergamon Press, Inc., Elmsford, NY, USA, 1994. ISBN 0-08-042024-9.
- [14] N. Cesa-Bianchi and G. Lugosi. *Prediction, Learning, and Games*. Cambridge University Press, 2006.
- [15] A.V. Nazin, B.T. Polyak.

 A randomized algorithm for finding the eigenvector of a stochastic matrix with application to PageRank problem.

 Automation and Remote Control, 2011, vol. 72, no. 2, pp. 342–352.)

- [16] Nazin, A.V., B.M. Miller. Mirror Descent Algorithm for Homogeneous Finite Controlled Markov Chains with Unknown Mean Losses. Proc. 18th IFAC World Congress, Milano, Italy, August 28 – September 2, 2011.
- [17] Nazin, A.V., B.M. Miller. The Mirror Descent Control Algorithm for Weakly Regular Homogeneous Finite Markov Chains with Unknown Mean Losses. *The 50th IEEE Conference on Decision and Control and European Control Conference, December 12–15, 2011, Orlando, Florida USA.*

