Definable Combinatorial Principles in Fragments of Arithmetic

Wang Wei

Sun Yat-sen University

December 2024, Steklov Institute (online)

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

The Language

 L_A , the language of arithmetic, is a first order language with two constants (0,1), two binary operations $(+,\times)$ and a binary relation (<).

The Axioms

 PA^- is a finite L_A -theory, saying that a desired model is the non-negative part of a discrete ordered ring.

For each L_A -formula $\varphi(x, \vec{y})$, $I\varphi$ is the following formula

$$\forall \vec{y} \big(\varphi(0, \vec{y}) \land \forall x (\varphi(x, \vec{y}) \to \varphi(x+1, \vec{y})) \to \forall x \varphi(x, \vec{y}) \big).$$

 Σ_n is the following L_A -theory

$$PA^- + \{I\varphi : \varphi \in \Sigma_n\},\$$

while

$$PA = \bigcup_{n} I\Sigma_n.$$

For each L_A -formula $\varphi(x, y, \vec{z})$, $B\varphi$ is the following formula

$$\forall u, \vec{z} \big(\forall x < u \exists y \varphi \to \exists v \forall x < u \exists y < u \varphi \big).$$

 $B\Sigma_n$ is the following L_A -theory

$$I\Sigma_0 + \{B\varphi : \varphi \in \Sigma_n\}.$$

The Axioms

 PA^- is a finite L_A -theory, saying that a desired model is the non-negative part of a discrete ordered ring.

For each L_A -formula $\varphi(x, \vec{y})$, $I\varphi$ is the following formula

$$\forall \vec{y} \big(\varphi(0, \vec{y}) \land \forall x (\varphi(x, \vec{y}) \to \varphi(x+1, \vec{y})) \to \forall x \varphi(x, \vec{y}) \big).$$

 \sum_{n} is the following L_A -theory

$$PA^- + \{I\varphi : \varphi \in \Sigma_n\},$$

while

$$PA = \bigcup_{n} I \Sigma_{n}.$$

For each L_A -formula $\varphi(x, y, \vec{z})$, $B\varphi$ is the following formula

$$\forall u, \vec{z} (\forall x < u \exists y \varphi \to \exists v \forall x < u \exists y < u \varphi).$$

 $B\Sigma_n$ is the following L_A -theory

$$I\Sigma_0 + \{B\varphi : \varphi \in \Sigma_n\}.$$

The Axioms

 PA^- is a finite L_A -theory, saying that a desired model is the non-negative part of a discrete ordered ring.

For each L_A -formula $\varphi(x,\vec{y})$, $I\varphi$ is the following formula

$$\forall \vec{y} \big(\varphi(0, \vec{y}) \land \forall x (\varphi(x, \vec{y}) \to \varphi(x+1, \vec{y})) \to \forall x \ \varphi(x, \vec{y}) \big).$$

 \sum_{n} is the following L_A -theory

$$PA^- + \{I\varphi : \varphi \in \Sigma_n\},\$$

while

$$PA = \bigcup_{n} I \Sigma_{n}.$$

For each L_A -formula $\varphi(x, y, \vec{z})$, $B\varphi$ is the following formula

$$\forall u, \vec{z} \big(\forall x < u \exists y \varphi \to \exists v \forall x < u \exists y < u \varphi \big).$$

 $B\Sigma_n$ is the following L_A -theory

$$I\Sigma_0 + \{B\varphi : \varphi \in \Sigma_n\}.$$

Relations between the Fragments

Theorem (Parsons; Paris and Kirby; Ryll-Nardzewski)

The following implications are all provable over $I\Sigma_0$, but none of them is reversible

$$I\Sigma_{n+1} \to B\Sigma_{n+1} \to I\Sigma_n.$$

Thus PA is not finitely axiomatizible.

Pigeonhole Principle

Pigeonhole Principle: There is no injection from any $b+1=\{0,1,\ldots,b\}$ to $b=\{0,1,\ldots,b-1\}.$

Since PA is some sort of finite set theory, Pigeonhole Principle can be formalized in PA.

 $PHP(\Sigma_n)$: There is no Σ_n -injection from any b+1 to b.

Theorem (Dimitracopoulos and Paris, 1986)

Over $PA^- + I\Sigma_0$, for n > 0, $B\Sigma_n$ and $PHP(\Sigma_n)$ are equivalent

Pigeonhole Principle

Pigeonhole Principle: There is no injection from any $b+1=\{0,1,\ldots,b\}$ to $b=\{0,1,\ldots,b-1\}.$

Since PA is some sort of finite set theory, Pigeonhole Principle can be formalized in PA.

 $PHP(\Sigma_n)$: There is no Σ_n -injection from any b+1 to b.

Theorem (Dimitracopoulos and Paris, 1986)

Over $PA^- + I\Sigma_0$, for n > 0, $B\Sigma_n$ and $PHP(\Sigma_n)$ are equivalent.

Some Variants of Pigeonhole Principle

For a cardinal κ , a model M (of PA^-) is κ -like iff $|M| = \kappa > |a| = |[0, a-1]^M|$ for every $a \in M$.

Theorem (Richard Kaye, 1995)

Let $M \models PA$

- (1) M is κ like, iff $(M, \mathcal{P}(M))$ satisfies $CARD_2$, which states that there is **no** injection $M \to a \in M$.
- (2) M is κ like for some limit cardinal κ , iff $(M, \mathcal{P}(M))$ satisfies GPHP_2 , which states that for any $a \in M$ there is $b \in M$ s.t. there is no injection $b \to a$.

Some Variants of Pigeonhole Principle

For a cardinal κ , a model M (of PA $^-$) is κ -like iff $|M| = \kappa > |a| = |[0, a-1]^M|$ for every $a \in M$.

Theorem (Richard Kaye, 1995)

Let $M \models PA$.

- (1) M is κ like, iff $(M, \mathcal{P}(M))$ satisfies $CARD_2$, which states that there is no injection $M \to a \in M$.
- (2) M is κ like for some limit cardinal κ , iff $(M, \mathcal{P}(M))$ satisfies GPHP_2 , which states that for any $a \in M$ there is $b \in M$ s.t. there is no injection $b \to a$.

Some Variants of Pigeonhole Principle

For a cardinal κ , a model M (of PA^-) is κ -like iff $|M| = \kappa > |a| = |[0, a-1]^M|$ for every $a \in M$.

Theorem (Richard Kaye, 1995)

Let $M \models PA$.

- (1) M is κ like, iff $(M, \mathcal{P}(M))$ satisfies $CARD_2$, which states that there is no injection $M \to a \in M$.
- (2) M is κ like for some limit cardinal κ , iff $(M, \mathcal{P}(M))$ satisfies GPHP_2 , which states that for any $a \in M$ there is $b \in M$ s.t. there is no injection $b \to a$.

Fragments of PA and Variants of PHP

exp: The function $x \mapsto 2^x$ is total. exp is provable in $I\!\Sigma_1$ but not in $I\!\Sigma_0$. Let GPHP be the first-order part of GPHP₂ which consists of infinitely

Theorem (Kaye, 1996)

many axioms.

Let κ be a singular cardinal and n>0. Every model of $B\Sigma_n + \exp + \neg I\Sigma_n$ is elementarily equivalent to a κ -like model. Thus, $B\Sigma_n + \exp + \neg I\Sigma_n \vdash \text{GPHP}$.

This may seem very interesting, because 'moderately' large infinity is involved in solving some 'elementary' problem of arithmetic.

Fragments of PHP

 \overline{CARD} is the first order part of \overline{CARD}_2 , so \overline{CARD} says that there is no first order injection sending the whole model into a proper initial segment.

 $\ensuremath{\mathsf{GPHP}}$ is the first order part of $\ensuremath{\mathsf{GPHP}}_2$ just mentioned.

 $CARD(\Gamma)$ (GPHP(Γ)) is CARD (resp. GPHP) restricted to Γ -definable maps.

It is easy to see that

$$B\Sigma_{n+1} \vdash \text{GPHP}(\Sigma_{n+1}), \quad PA^- + \text{GPHP}(\Sigma_n) \vdash \text{CARD}(\Sigma_n).$$

Quetion (Kaye, 1995)

Does CARD imply GPHP over PA⁻ $(+I\Sigma_1)$?

Fragments of PHP

 \overline{CARD} is the first order part of \overline{CARD}_2 , so \overline{CARD} says that there is no first order injection sending the whole model into a proper initial segment.

 $\ensuremath{\mathsf{GPHP}}$ is the first order part of $\ensuremath{\mathsf{GPHP}}_2$ just mentioned.

 $CARD(\Gamma)$ (GPHP(Γ)) is CARD (resp. GPHP) restricted to Γ -definable maps.

It is easy to see that

$$B\Sigma_{n+1} \vdash \text{GPHP}(\Sigma_{n+1}), \quad \text{PA}^- + \text{GPHP}(\Sigma_n) \vdash \text{CARD}(\Sigma_n).$$

Quetion (Kaye, 1995)

Does CARD imply GPHP over PA⁻ (+ $I\Sigma_1$)?

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

Fragments of PHP and Reverse Math

 $\mathrm{CARD}(\Sigma_2^0)$ has proved useful in reverse mathematics. E.g.,

Theorem (Groszek and Slaman; Kaye)

$$I\Sigma_n \not\vdash CARD(\Sigma_{n+1}).$$

A coloring $C: [\mathbb{N}]^2 \to \mathbb{N}$ is 2-bounded iff $|C^{-1}(k)| \leq 2$ for all k; a set R is a rainbow for C iff C is injective on $[R]^2$.

 RRT_2^2 (RRT for Rainbow Ramsey Theorem): every 2-bounded coloring on $[\mathbb{N}]^2$ admits an infinite rainbow.

Theorem (Conidis and Slaman, 2013)

 $\mathsf{RCA}_0 + \mathsf{RRT}_2^2 \vdash \mathrm{CARD}(\Sigma_2^0).$

So, RRT_2^2 is not arithmetically conservative over RCA_0 .

Another Variant of PHP

WPHP(Σ_n): There is no Σ_n -injection from any 2x to x>0. Clearly,

$$B\Sigma_{n+1} \vdash \text{WPHP}(\Sigma_{n+1}), \quad \text{PA}^- + \text{WPHP}(\Sigma_n) \vdash \text{GPHP}(\Sigma_n).$$

 $\mathrm{WPHP}(\Sigma_n)$ arises from the reverse mathematics of some analysis propositions related to Dominated Convergence Theorem.

Dominated Convergence Theorem

DCT': Suppose that

- ▶ f, $(f_n)_n$ and g are measurable functions defined on [0,1];
- $ightharpoonup f_n$'s are dominated by g and converge almost everywhere to f.

Then $\lim_n \int f_n = \int f_n$

- $2-\mbox{WWKL}\colon$ Every Π^0_2 set in Cantor space with positive measure is non-empty.
- 2 RAN: There is a random real relative to the halting problem.

Theorem (Avigad, Dean and Rute)

Over RCA₀, the followings are equivalent

DCT',
$$2 - WWKL$$
, $B\Sigma_2^0 + 2 - RAN$.

The first order theory of DCT' (also 2 - WWKL) is $B\Sigma_2^0$

Dominated Convergence Theorem

DCT': Suppose that

- ▶ f, $(f_n)_n$ and g are measurable functions defined on [0,1];
- $ightharpoonup f_n$'s are dominated by g and converge almost everywhere to f.

Then $\lim_n \int f_n = \int f_n$

- 2-WWKL: Every Π_2^0 set in Cantor space with positive measure is non-empty.
- 2 RAN: There is a random real relative to the halting problem.

Theorem (Avigad, Dean and Rute)

Over RCA₀, the followings are equivalent

DCT',
$$2 - WWKL$$
, $B\Sigma_2^0 + 2 - RAN$.

The first order theory of DCT' (also 2 - WWKL) is $B\Sigma_2^0$.

2 - WWKL and 2 - RAN over $\mathbb N$

Theorem (Kučera)

If X is Martin-Löf random relative to the halting problem then every Π_2^0 subset of 2^ω with positive measure contains an element like

$$\langle b_0 b_1 \dots b_k X(0) X(1) \dots X(n) \dots \rangle.$$

As a consequence,

$$(\mathbb{N}, \mathcal{S}) \models 2 - WWKL \Leftrightarrow (\mathbb{N}, \mathcal{S}) \models 2 - RAN.$$

Weak PHP and Reverse Mathematics

 $2-{
m WWKL}(1/2)$: Every Π_2 set in Cantor space with measure greater than 1/2 is non-empty.

Theorem (Belanger, Chong, W., Wong and Yang)

- (1) $RCA_0 + 2 WWKL(1/2) \vdash 2 RAN$;
- (2) The first order theory of 2-WWKL(1/2) is $I\Sigma_1^0+WPHP(\Sigma_2^0)$;
- (3) Over $I\Sigma_1^0$, the following implications are strict

$$B\Sigma_{n+1}^0 \to \text{WPHP}(\Sigma_{n+1}^0) \to \text{CARD}(\Sigma_{n+1}^0).$$

Corollary (Slaman; BCWWY)

 $RCA_0 + 2 - RAN$ is strictly weaker than 2 - WWKL or DCT'.

Weak PHP and Reverse Mathematics

2 - WWKL(1/2): Every Π_2 set in Cantor space with measure greater than 1/2 is non-empty.

Theorem (Belanger, Chong, W., Wong and Yang)

- (1) $RCA_0 + 2 WWKL(1/2) \vdash 2 RAN$;
- (2) The first order theory of 2-WWKL(1/2) is $I\Sigma_1^0+WPHP(\Sigma_2^0)$;
- (3) Over $I\Sigma_1^0$, the following implications are strict

$$B\Sigma_{n+1}^0 \to \text{WPHP}(\Sigma_{n+1}^0) \to \text{CARD}(\Sigma_{n+1}^0).$$

Corollary (Slaman; BCWWY)

 $RCA_0 + 2 - RAN$ is strictly weaker than 2 - WWKL or DCT'.

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

WPHP (Σ_n) : There is no Σ_n -injection from any 2x to x > 0.

 $\operatorname{GPHP}(\Sigma_n)$: For each a, there is b s.t. there is no Σ_n -injection from any b to a.

 $\operatorname{FRT}_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ admits a homogeneous set of size a.

 $\mathrm{FRT}^e(\Sigma_n)$ is $\forall k \ \mathrm{FRT}^e_k(\Sigma_n)$, and $\mathrm{FRT}(\Sigma_n)$ is $\forall e \ \mathrm{FRT}^e(\Sigma_n)$

fairFRT $_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ corresponds to some i < k s.t. $F^{-1}(i)$ has Σ_n -cardinality $\geq a$ (denoted by $|F^{-1}(i)|_{\Sigma_n} \geq a$), i.e., there is a Σ_n -injection $F: a \to b$ s.t. if $X \in [a]^e$ then

$$C(\{F(x):x\in X\})=i$$

fairFRT $^e(\Sigma_n)$ is $\forall k$ fairFRT $^e_k(\Sigma_n)$, and fairFRT (Σ_n) is $\forall e$ fairFRT $^e(\Sigma_n)$.

WPHP (Σ_n) : There is no Σ_n -injection from any 2x to x > 0.

 $\frac{\mathrm{GPHP}(\Sigma_n)}{b}$: For each a, there is b s.t. there is no Σ_n -injection from any b to a.

 $\operatorname{FRT}_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ admits a homogeneous set of size a.

 $\operatorname{FRT}^e(\Sigma_n)$ is $\forall k \ \operatorname{FRT}^e_k(\Sigma_n)$, and $\operatorname{FRT}(\Sigma_n)$ is $\forall e \ \operatorname{FRT}^e(\Sigma_n)$

fairFRT $_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ corresponds to some i < k s.t. $F^{-1}(i)$ has Σ_n -cardinality $\geq a$ (denoted by $|F^{-1}(i)|_{\Sigma_n} \geq a$), i.e., there is a Σ_n -injection $F: a \to b$ s.t. if $X \in [a]^e$ then

$$C(\{F(x):x\in X\})=i$$

fairFRT $^e(\Sigma_n)$ is $\forall k$ fairFRT $^e_k(\Sigma_n)$, and fairFRT (Σ_n) is $\forall e$ fairFRT $^e(\Sigma_n)$.

WPHP (Σ_n) : There is no Σ_n -injection from any 2x to x > 0.

 $\frac{\mathrm{GPHP}(\Sigma_n)}{b}$: For each a, there is b s.t. there is no Σ_n -injection from any b to a.

 $\operatorname{FRT}_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e\to k$ admits a homogeneous set of size a.

 $\operatorname{FRT}^e(\Sigma_n)$ is $\forall k \ \operatorname{FRT}^e_k(\Sigma_n)$, and $\operatorname{FRT}(\Sigma_n)$ is $\forall e \ \operatorname{FRT}^e(\Sigma_n)$

fairFRT $_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ corresponds to some i < k s.t. $F^{-1}(i)$ has Σ_n -cardinality $\geq a$ (denoted by $|F^{-1}(i)|_{\Sigma_n} \geq a$), i.e., there is a Σ_n -injection $F: a \to b$ s.t. if $X \in [a]^e$ then

$$C(\{F(x):x\in X\})=i$$

fairFRT^e(Σ_n) is $\forall k$ fairFRT^e_k(Σ_n), and fairFRT(Σ_n) is $\forall e$ fairFRT^e(Σ_n).

WPHP(Σ_n): There is no Σ_n -injection from any 2x to x > 0.

 $\frac{\mathrm{GPHP}(\Sigma_n)}{b}$: For each a, there is b s.t. there is no Σ_n -injection from any b to a.

 $\operatorname{FRT}_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e\to k$ admits a homogeneous set of size a.

 $\operatorname{FRT}^e(\Sigma_n)$ is $\forall k \operatorname{FRT}^e_k(\Sigma_n)$, and $\operatorname{FRT}(\Sigma_n)$ is $\forall e \operatorname{FRT}^e(\Sigma_n)$.

fairFRT $_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e \to k$ corresponds to some i < k s.t. $F^{-1}(i)$ has Σ_n -cardinality $\geq a$ (denoted by $|F^{-1}(i)|_{\Sigma_n} \geq a$), i.e., there is a Σ_n -injection $F: a \to b$ s.t. if $X \in [a]^e$ then

$$C(\{F(x):x\in X\})=i$$

 $\operatorname{fairFRT}^e(\Sigma_n)$ is $\forall k$ $\operatorname{fairFRT}^e_k(\Sigma_n)$, and $\operatorname{fairFRT}(\Sigma_n)$ is $\forall e$ $\operatorname{fairFRT}^e(\Sigma_n)$.

WPHP(Σ_n): There is no Σ_n -injection from any 2x to x > 0.

 $\frac{\mathrm{GPHP}(\Sigma_n)}{b}$: For each a, there is b s.t. there is no Σ_n -injection from any b to a.

 $\operatorname{FRT}_k^e(\Sigma_n)$: For each a, there is b s.t. every Σ_n coloring $C:[b]^e\to k$ admits a homogeneous set of size a.

 $\operatorname{FRT}^e(\Sigma_n)$ is $\forall k \operatorname{FRT}^e_k(\Sigma_n)$, and $\operatorname{FRT}(\Sigma_n)$ is $\forall e \operatorname{FRT}^e(\Sigma_n)$.

$$C(\{F(x):x\in X\})=i.$$

 $\operatorname{fairFRT}^e(\Sigma_n)$ is $\forall k \operatorname{fairFRT}^e_k(\Sigma_n)$, and $\operatorname{fairFRT}(\Sigma_n)$ is $\forall e \operatorname{fairFRT}^e(\Sigma_n)$.

Some Simple Implications

Over PA⁻,

- (1) $I\Sigma_1 \vdash FRT(\Sigma_1)$.
- (2) $I\Sigma_1$ proves the following implications

$$WPHP(\Gamma) \to GPHP(\Gamma) \to CARD(\Gamma)$$
.

- (3) $I\!\Sigma_1$ proves that if $0 < e \le e' \le e''$ and $0 < k \le k' \le k''$ then $\mathrm{FRT}_{k''}^{e''}(\Gamma) \to \mathrm{FRT}_{k'}^{e'}(\Gamma) \to \mathrm{fairFRT}_{k}^{e}(\Gamma).$
- (4) $I\Sigma_1 \vdash fairFRT^1(\Gamma) \rightarrow GPHP(\Gamma)$.
- (5) $B\Sigma_{n+1} \vdash FRT(\Sigma_{n+1})$.

Some Easy Equivalence

Theorem

Over $I\Sigma_n$ where n > 0,

 $\mathrm{GPHP}(\Sigma_{n+1}) \ \leftrightarrow \ \mathrm{FRT}^1(\Sigma_{n+1}) \ \leftrightarrow \ \mathrm{fairFRT}^1(\Sigma_{n+1}) \ \leftrightarrow \ \mathrm{FRT}^1_2(\Sigma_{n+1}).$

Theorem

For n > 0, $I\Sigma_n \vdash \text{fairFRT}_2^1(\Sigma_{n+1})$.

- (1) We already have $I\Sigma_n + \text{GPHP}(\Sigma_{n+1}) \vdash \text{fairFRT}^1(\Sigma_{n+1})$;
- (2) So we work in a model $M \models I\Sigma_n + \neg \operatorname{GPHP}(\Sigma_{n+1});$
- (3) The following is a proper additive cut,

$$I = \{a: \text{ for some } b, \text{ there is } \mathbf{no} \text{ injection } F \in \Sigma_{n+1}, F \colon b \to a\}.$$

If $a \in I < b$ then $|a|_{\Sigma_{n+1}} < b$.

- (4) Fix a and pick b > I, also fix a Σ_{n+1} -coloring $F: b \to 2$;
- (5) By $I\Sigma_n$, for each i < 2 there exists a Σ_{n+1} -bijection (called collapse) between $F^{-1}(i)$ and a proper cut J_i . Either
 - One of J_i contains some c>I, so $|F^{-1}(i)|_{\Sigma_{n+1}}\geq a$;
 - ▶ Both $J_i = I$. The collapses together produce a Σ_{n+1} -bijection from b to I; thus $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$ for both i < 2.

Theorem

For n > 0, $I\Sigma_n \vdash \text{fairFRT}_2^1(\Sigma_{n+1})$.

- (1) We already have $I\Sigma_n + GPHP(\Sigma_{n+1}) \vdash fairFRT^1(\Sigma_{n+1})$;
- (2) So we work in a model $M \models I\Sigma_n + \neg \operatorname{GPHP}(\Sigma_{n+1});$
- (3) The following is a proper additive cut,

$$I = \{a: \text{ for some } b, \text{ there is no injection } F \in \Sigma_{n+1}, F: b \to a\}.$$

- If $a \in I < b$ then $|a|_{\Sigma_{n+1}} < b$.
- (4) Fix a and pick b > I, also fix a Σ_{n+1} -coloring $F \colon b \to 2$;
- (5) By $I\Sigma_n$, for each i < 2 there exists a Σ_{n+1} -bijection (called collapse) between $F^{-1}(i)$ and a proper cut J_i . Either
 - One of J_i contains some c > I, so $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$;
 - ▶ Both $J_i = I$. The collapses together produce a Σ_{n+1} -bijection from b to I; thus $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$ for both i < 2.

Theorem

For
$$n > 0$$
, $I\Sigma_n \vdash \text{fairFRT}_2^1(\Sigma_{n+1})$.

- (1) We already have $I\Sigma_n + \text{GPHP}(\Sigma_{n+1}) \vdash \text{fairFRT}^1(\Sigma_{n+1})$;
- (2) So we work in a model $M \models I\Sigma_n + \neg \operatorname{GPHP}(\Sigma_{n+1})$;
- (3) The following is a proper additive cut,

$$I = \{a: \text{ for some } b, \text{ there is } \underset{}{\mathbf{no}} \text{ injection } F \in \Sigma_{n+1}, F \colon b \to a\}.$$

If
$$a \in I < b$$
 then $|a|_{\Sigma_{n+1}} < b$.

- (4) Fix a and pick b > I, also fix a Σ_{n+1} -coloring $F: b \to 2$;
- (5) By $I\Sigma_n$, for each i < 2 there exists a Σ_{n+1} -bijection (called collapse) between $F^{-1}(i)$ and a proper cut J_i . Either
 - One of J_i contains some c > I, so $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$
 - ▶ Both $J_i = I$. The collapses together produce a Σ_{n+1} -bijection from b to I; thus $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$ for both i < 2.

Theorem

For
$$n > 0$$
, $I\Sigma_n \vdash \text{fairFRT}_2^1(\Sigma_{n+1})$.

- (1) We already have $I\Sigma_n + \text{GPHP}(\Sigma_{n+1}) \vdash \text{fairFRT}^1(\Sigma_{n+1})$;
- (2) So we work in a model $M \models I\Sigma_n + \neg \operatorname{GPHP}(\Sigma_{n+1})$;
- (3) The following is a proper additive cut,

$$I = \{a: \text{ for some } b, \text{ there is } \mathop{\mathrm{no}}\nolimits \text{ injection } F \in \Sigma_{n+1}, F \colon b \to a\}.$$

If
$$a \in I < b$$
 then $|a|_{\Sigma_{n+1}} < b$.

- (4) Fix a and pick b > I, also fix a Σ_{n+1} -coloring $F: b \to 2$;
- (5) By $I\Sigma_n$, for each i < 2 there exists a Σ_{n+1} -bijection (called collapse) between $F^{-1}(i)$ and a proper cut J_i . Either
 - One of J_i contains some c > I, so $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$;
 - ▶ Both $J_i = I$. The collapses together produce a Σ_{n+1} -bijection from b to I; thus $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$ for both i < 2.

Theorem

For n > 0, $I\Sigma_n \vdash \text{fairFRT}_2^1(\Sigma_{n+1})$.

- (1) We already have $I\Sigma_n + \text{GPHP}(\Sigma_{n+1}) \vdash \text{fairFRT}^1(\Sigma_{n+1})$;
- (2) So we work in a model $M \models I\Sigma_n + \neg \operatorname{GPHP}(\Sigma_{n+1})$;
- (3) The following is a proper additive cut,

$$I=\{a: \text{ for some } b, \text{ there is } \underset{}{\text{no}} \text{ injection } F\in \Sigma_{n+1}, F\colon b\to a\}.$$

If $a \in I < b$ then $|a|_{\Sigma_{n+1}} < b$.

- (4) Fix a and pick b > I, also fix a Σ_{n+1} -coloring $F: b \to 2$;
- (5) By $I\Sigma_n$, for each i < 2 there exists a Σ_{n+1} -bijection (called collapse) between $F^{-1}(i)$ and a proper cut J_i . Either
 - One of J_i contains some c > I, so $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$;
 - ▶ Both $J_i = I$. The collapses together produce a Σ_{n+1} -bijection from b to I; thus $|F^{-1}(i)|_{\Sigma_{n+1}} \ge a$ for both i < 2.

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

Separating CARD and GPHP

Theorem (W)

$$\mathrm{PA}^- + I\!\Sigma_n + \mathrm{CARD}(\Sigma_{n+1}) \not\vdash \mathrm{GPHP}(\Sigma_{n+1}).$$

Lemma (Lifting)

Let M be a model of $PA^- + I\Sigma_n$ for some n > 0. Suppose that

- ► There exists a Σ_{n+1}^M -injection from M into some $a \in M$;
- For some c < a in a monster model containing M,

$$M(c) = \{f(c) : f \text{ is an } M \text{-finite function with domain } = a\}$$

Then there also exists a $\sum_{n=1}^{M(c)}$ -injection from M(c) into a.

Separating CARD and GPHP

Theorem (W)

$$PA^- + I\Sigma_n + CARD(\Sigma_{n+1}) \not\vdash GPHP(\Sigma_{n+1}).$$

Lemma (Lifting)

Let M be a model of $PA^- + I\Sigma_n$ for some n > 0. Suppose that

- ▶ There exists a $\sum_{n=1}^{M}$ -injection from M into some $a \in M$;
- lacktriangle For some c < a in a monster model containing M,

$$M(c) = \{f(c) : f \text{ is an } M\text{-finite function with domain } = a\}.$$

Then there also exists a $\sum_{n+1}^{M(c)}$ -injection from M(c) into a.

Let $M \models \mathrm{PA}^- + I\!\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M.

We build a sequence $(M_k : k \in \mathbb{N})$ s.t

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}}$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k:M_k o [0,a]$
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j > k s.t. $M_j \models \forall y \neg \varphi(d_j,y)$ for some $d_j \in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

Let $M \models \mathrm{PA}^- + I\!\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M. We build a sequence $(M_k \colon k \in \mathbb{N})$ s.t.

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}};$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k: M_k \to [0, a]$;
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j>k s.t. $M_j \models \forall y \neg \varphi(d_j,y)$ for some $d_j \in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

Let $M \models \mathrm{PA}^- + I\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M. We build a sequence $(M_k \colon k \in \mathbb{N})$ s.t.

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}};$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k:M_k o [0,a]$
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j>k s.t. $M_j\models \forall y\neg\varphi(d_j,y)$ for some $d_j\in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

Let $M \models \mathrm{PA}^- + I\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M. We build a sequence $(M_k \colon k \in \mathbb{N})$ s.t.

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}};$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k:M_k\to[0,a]$;
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j>k s.t. $M_j\models \forall y\neg\varphi(d_j,y)$ for some $d_j\in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

Let $M \models \mathrm{PA}^- + I\!\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M. We build a sequence $(M_k \colon k \in \mathbb{N})$ s.t.

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}};$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k:M_k\to[0,a]$;
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j>k s.t. $M_j\models \forall y\neg\varphi(d_j,y)$ for some $d_j\in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

Let $M \models \mathrm{PA}^- + I\!\Sigma_n + \neg \Sigma_{n+1} - \mathrm{CARD}$ be countable. Fix $a \in M$ and a Σ_{n+1}^M -definable 1-1 map $f \colon M \to [0,a]$. Also fix $(b_k \colon k \in \mathbb{N})$ cofinal in M.

We build a sequence $(M_k : k \in \mathbb{N})$ s.t.

- (1) $M_0 = M$;
- (2) $M_{k+1} = M_k(c_k)$ is a Σ_{n+1} -elementary cofinal extension of M_k ;
- (3) $[0, b_k]^{M_k} = [0, b_k]^{M_{k+1}};$
- (4) For each k, there is a Σ_{n+1} -definable 1-1 map $f_k:M_k\to[0,a]$;
- (5) If $\varphi(x,y)$ is a $\Sigma_{n+1}^{M_k}$ -formula defining a 1-1 map $M_k \to [0,a]$ then there is j>k s.t. $M_j\models \forall y\neg \varphi(d_j,y)$ for some $d_j\in M_j$.

Let $N = \bigcup_{k \in \mathbb{N}} M_k$.

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

Separating FRT and WPHP

Theorem

For every countable $M \models I\Sigma_n$ with n > 0 and any $a \in M$, there exists N s.t. $M \leq_{cf,\Sigma_{n+1}} N$, $[0,a]^M = [0,a]^N$ and $N \models I\Sigma_n + \operatorname{FRT}(\Sigma_{n+1})$.

Thus, $I\Sigma_n + FRT(\Sigma_{n+1}) \not\vdash WPHP(\Sigma_{n+1})$.

Key Lemma

Lemma

Suppose that

- (a) M is a countable model of $I\Sigma_n$ with n > 0,
- (b) a, c, e, x are elements of M,
- (c) φ is a $\Sigma_n(M)$ -formula defining $C:[y]^e \times M \to c$ with y sufficiently large, s.t., $\bar{C}(\vec{d}) = \lim_s C(\vec{d},s)$ exists for all $\vec{d} \in [y]^e$.

Then either one of the followings holds,

- (1) There exist $s \in M$, $H \in [y]^x \cap M$ and i < c, s.t. $\overline{C}(\overline{d}) = C(\overline{d}, t) = i$ for all $\overline{d} \in [H]^e$ and t > s.
- (2) There exists N, s.t. $M \leq_{cf, \Sigma_{n+1}} N$, $[0, a]^N = [0, a]^M$, $\lim_s C^N(\cdot, s)$ is undefined on some $\vec{d} \in [y]^e \cap N$ where C^N is the map defined by φ in N.

Key Lemma

Lemma

Suppose that

- (a) M is a countable model of $I\Sigma_n$ with n > 0,
- (b) a, c, e, x are elements of M,
- (c) φ is a $\Sigma_n(M)$ -formula defining $C:[y]^e \times M \to c$ with y sufficiently large, s.t., $\bar{C}(\vec{d}) = \lim_s C(\vec{d},s)$ exists for all $\vec{d} \in [y]^e$.

Then either one of the followings holds,

- (1) There exist $s \in M$, $H \in [y]^x \cap M$ and i < c, s.t. $C(\vec{d}) = C(\vec{d}, t) = i$ for all $\vec{d} \in [H]^e$ and t > s.
- (2) There exists N, s.t. $M \preceq_{cf,\Sigma_{n+1}} N$, $[0,a]^N = [0,a]^M$, $\lim_s C^N(\cdot,s)$ is undefined on some $\vec{d} \in [y]^e \cap N$ where C^N is the map defined by φ in N.

By finite combinatorics, there exists a primitive recursive function r s.t.

$$r(x, e, k) = \min\{y : y \to (x)_k^e\}.$$

In $I\Sigma_1$, define

$$r^{(0)}(x, e, k) = x, \quad r^{(m+1)}(x, e, k) = r(r^{(m)}(x, e, k), e, k).$$

In the above lemma, for fixed a, c, e, x, we pick $b > \mathbb{N}$, $k = \max\{a, c\}$ and y s.t.

$$y \ge r^{(b)}(x, e, k)$$

By finite combinatorics, there exists a primitive recursive function r s.t.

$$r(x, e, k) = \min\{y : y \to (x)_k^e\}.$$

In $I\Sigma_1$, define

$$r^{(0)}(x, e, k) = x$$
, $r^{(m+1)}(x, e, k) = r(r^{(m)}(x, e, k), e, k)$.

In the above lemma, for fixed $a,\,c,\,e,\,x$, we pick $b>\mathbb{N}$, $k=\max\{a,\,c\}$ and y s.t.

$$y \ge r^{(b)}(x, e, k).$$

FRT, WPHP and Collections

Combining the above proof and the proof that $I\Sigma_n + \mathrm{WPHP}(\Sigma_{n+1}) \not\vdash B\Sigma_{n+1}$, we can get

Theorem

$$I\Sigma_n + WPHP(\Sigma_{n+1}) + FRT(\Sigma_{n+1}) \not\vdash B\Sigma_{n+1}.$$

PHP and Fragments of PA

PHP and Reverse Mathematics

New Variants of PHP

Fragments of CARD and GPHP

Fragments of FRT and WPHP

Quetions

Definable Variants of Other Combinatorial Principles

We may formulate definable variants of other finite combinatorial principles, like Hales-Jewett theorem, Turán's Theorem.

Similar results can be proved. How about the relations between such definable finite combinatorial principles?

GPHP and 2 - RAN

We mentioned that

- ► The first order theory of $RCA_0 + 2 WWKL(1/2)$ is axiomatized by $I\Sigma_1 + WPHP(\Sigma_2)$.
- ► $RCA_0 + 2 WWKL(1/2) \vdash 2 RAN$.

Can these definable finite combinatorial principles help in understanding the first order theories of 2 - RAN? E.g.,

$$RCA_0 + 2 - RAN \vdash GPHP(\Sigma_2^0)$$
?

GPHP and 2 - RAN

We mentioned that

- ► The first order theory of $RCA_0 + 2 WWKL(1/2)$ is axiomatized by $I\Sigma_1 + WPHP(\Sigma_2)$.
- ► $RCA_0 + 2 WWKL(1/2) \vdash 2 RAN$.

Can these definable finite combinatorial principles help in understanding the first order theories of 2-RAN? E.g.,

$$RCA_0 + 2 - RAN \vdash GPHP(\Sigma_2^0)$$
?

Variants of FRT and RT_2^2

- $\blacktriangleright \text{ (Hirst) } \mathsf{RCA}_0 + \mathsf{RT}_2^2 \vdash B\Sigma_2^0.$
- ▶ (Chong, Slaman and Yang) $RCA_0 + RT_2^2 \not\vdash I\Sigma_2^0$.
- ▶ (Patey and Yokoyama) $RCA_0 + RT_2^2$ is Π_3^0 -conservative over $B\Sigma_2^0$.
- (Houéron, Patey and Yokoyama) $\operatorname{RCA}_0 + \operatorname{RT}_2^2$ is Π^1_1 -conservative over $B\Sigma_2^0 + \operatorname{WF}(\epsilon_0)$ and over $B\Sigma_2^0 + \bigcup_n \operatorname{WF}(\omega_n^\omega)$.
- ▶ (Houéron, Patey and Yokoyama) $RCA_0 + RT_2^2$ is Π_4^0 -conservative over $B\Sigma_2^0$.

Quetion

- ▶ Does $B\Sigma_n$ (n > 1) imply fairFRT $_2^1(\Sigma_{n+1})$?
- ▶ Does $RCA_0 + RT_2^2$ imply $fairFRT_2^1(\Sigma_3)$?

Variants of FRT and $\operatorname{\mathsf{RT}}^2_2$

- $\blacktriangleright \text{ (Hirst) } \mathsf{RCA}_0 + \mathsf{RT}_2^2 \vdash B\Sigma_2^0.$
- ▶ (Chong, Slaman and Yang) $RCA_0 + RT_2^2 \not\vdash I\Sigma_2^0$.
- ▶ (Patey and Yokoyama) $RCA_0 + RT_2^2$ is Π_3^0 -conservative over $B\Sigma_2^0$.
- (Houéron, Patey and Yokoyama) $\operatorname{RCA}_0 + \operatorname{RT}_2^2$ is Π^1_1 -conservative over $B\Sigma_2^0 + \operatorname{WF}(\epsilon_0)$ and over $B\Sigma_2^0 + \bigcup_n \operatorname{WF}(\omega_n^\omega)$.
- ► (Houéron, Patey and Yokoyama) $RCA_0 + RT_2^2$ is Π_4^0 -conservative over $B\Sigma_2^0$.

Quetion

- ▶ Does $B\Sigma_n$ (n > 1) imply fairFRT $_2^1(\Sigma_{n+1})$?
- ▶ Does $RCA_0 + RT_2^2$ imply $fairFRT_2^1(\Sigma_3)$?