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The Draupner wave

Anomalous (rogue) waves were observed by sailors for long time, but
these observations were treated as sailor’s stories (like observations of
mermaids).
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The first confirmed observation of a rogue wave at the Draupner platform
160 kilometers southwest from the southern tip of Norway, January 1,
1995.
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Rogue waves

Rogue waves were experimentally observed in
@ Ocean;
Water tanks;
Photorefractive cristals;

Bose-Einstein condensates;

°

°

@ Optical fibers;
°

@ Plasma physics;
)

Most popular point of view: generation of anomalous (rogue) waves is a
non-linear phenomenon, involving modulation instability.

Alternative explanation of the Draupner wave origin:

F. Fedele, J. Brennan, S. Ponce de Leédn, J. Dudley, F. Dias, “Real world
ocean rogue waves explained without the modulational instability”,
Scientific Reports, 6 (2016), 27715, 11 pp.

Is it possible to use soliton integrable equations as rogue waves madels?
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3 classical paper about modulation instability in nonlinear

medias

1) V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams
in nonlinear liquids”, JETP Letters. 3 (12), 307, 1966.

2) T. B. Benjamin, J. E. Feir, “The disintegration of wave trains on deep
water”. Part |. Theory, Journal of Fluid Mechanics 27 (1967) 417-430.

3) V. E. Zakharov, “Stability of period waves of finite amplitude on surface
of a deep fluid”, Journal of Applied Mechanics and Technical Physics,
9(2) (1968) 190-194.

In papers 1) and 3) the Nonlinear Schrédinger equation (NLS)
iU + U £20°0 =0, u=u(x,t)eC, (x,1)eR? (1)

was used as the basic mathematical model. If the sing “+”, we have
self-focusing NLS, if the sign “—”", we have defocusing NLS. There is a
big difference between this real forms from the analytic point of view.

Modulation instability is described by self-focusing NLS.
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Zero-curvature representation

Integrability of self-focusing NLS equation (SfNLS)
iU+ Uxx +20°0 =0, u=u(x,t)
is based on the zero-curvature representation (Zakharov-Shabat):

WA, x,t) = UL, x, DU, x, 1), Wy(d,x,t) = V(4 x, )U(A, X, 1),

—id  iu(x,t)
U=| ,
iu(x,t) ia
—2i2% +iu(x, u(x,t)  2idu(x, t) — ux(x, )
V(a,x,t)= -
2idu(x, t) + ux(x, 1) 2i22 —iu(x, t)u(x, t)
where

w0 =] el |
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Pierangeli D., Flammini M., Zhang L., Marcucci G., Agranat A.J.,
Grinevich P.G., Santini PM., Conti C., DelRe E. “Observation of
Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics”, Physical
Review X, 8:4 (2018), p. 041017 (9 pages);

The symmetric 3-wave interferometric scheme used to generate the
background wave with a single-mode perturbation propagating in a
pumped photorefractive KLTN (potassium-lithium-tantalate-niobate)
crystal.

Since NLS is supposed to describe the above physics only at the leading
order, one expects that the exact NLS RW recurrence be replaced by a
“Fermi-Pasta-Ulam-Tsingou” - type recurrence, before thermalization
destroys the pattern.
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Periodic problem for the soliton equations. Finite-gap

solutions.

The aim of this research was to develop some theory for the recurrence
of anomalous waves and to compare it with the experiment.

Let us remark that in these experiments the anomalous waves are
spatially-periodic.

The main method for constructing spatially-periodic solutions of the
soliton equations is the finite-gap method.

S. P. Novikov, The periodic problem for the Korteweg-de Vries equation,
Funct. Anal. Appl., 8:3 (1974), 236—246.

B.A. Dubrovin, V.B. Matveev, A.R. lts, P. Lax, H. McKean, P. van
Moerbeke, I.M. Krichever, ....
Korteweg-de Vries equation:

1

3
up = ZUXXX - EUUX’ u=u(x,t), ueR.

Auxiliary linear problem: the stationary 1-d Schrédinger operator

Ly = Ey, L =-82+ u(x).



Periodic problem for the soliton equations. Finite-gap

solutions.

Let u(x) be spatially-periodic. We have quantum theory of an electron in
1-d crystals.
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Figure: On the left: a periodic potential. On the right: the spectrum of the
quantum particle in the periodic potential.

P. G. Grinevich, P.M. Santini



Periodic problem for the soliton equations. Finite-gap

solutions.

The standard eigenfunctions basis in the solid state physics is formed by
Bloch solutions

Ly(x) = Ey(x)

Y(x+ L) =x=(E)y(x).

The energy E belongs to the spectrum iff [x(E)| = 1.

Novikov’s starting point: the Bloch eigenfunctions are well-defined for
complex energies, and they are meromorphic on Riemann surface I,
which is a two-sheeted covering of the E-plane. The branch points are
exactly the ends of the spectral gaps.
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Periodic problem for the soliton equations. Finite-gap

solutions,
For a generic smooth periodic potential u(x), u(x + L) = u(x)
@ The number of spectral gaps is infinite;
@ The spectral gaps with large numbers are very small.

A potential u(x) is called finite-gap if its spectrum has finite number of
spectral gaps. Equivalently, the Bloch eigenfinction is meromorphic on a
Riemann surface with finite number of branch points.

The spectral curve is invariant with respect to the Korteweg-de Vries
dynamics. In particular, the branch points are conservation laws for KdV.

KdV solution corresponding to Riemann surface with finite number of
branch points can be written explicitly in terms of the Riemann
theta-functions associated to these surfaces. These solutions can be
treated as nonlinear analogs of finite Fourier series.

The parameters in the theta-functional formulas are transcendental
expressions in terms of the spectral data. Usually for practical
applications these formulas require additional effectivization.
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Anomalous (rogue) waves Cauchy problem for the

Nonlinear Schrédinger equation

Fortunately, the generation of anomalous waves is described by special
solutions, not by generic ones. For these solutions it is possible to derive
good approximate formulas using the fact that the corresponding
Riemann surfaces are close to the degenerate ones.

P.G. Grinevich, P.M. Santini “The finite gap method and the periodic NLS
Cauchy problem of the anomalous waves, for a finite number of unstable
modes”, Russian Mathematical Surveys, 2019, v.74, No. 2.

Self-focusing NLS:
iUt + Uxx + 2U2EI =0, (2)

Anomalous waves Cauchy data

u(x,0) =a-+ev(x), v(x+L)=v(x), lelx1,

v(x):Z( e** + c_ e"kf) ki = zl_—ﬂl’ gl = O(1),

=1
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Degeneration of Riemann surfaces

shigQgyens

Figure: On the left: a regular Riemann surface. On the right: a
degenerate Riemann surface.

Degenerate surfaces correspond to the N-breathers solutions.

We use Riemann surfaces, which are close to the degenerate ones, i.e.
the handles are very thin.
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@ We approximate generic periodic rogue wave type solution by a
2N-gap one, where N the number of unstable modes.

@ For any t we approximate the finite-gap solution up to O(e)
correction by N-soliton solutions, but this approximation depends on
the time interval.

@ We keep only “essential” solitons, i.e. we approximate our solution
up to O(eP) error, 0 < p < 1 by N(t) soliton solutions, N(t) < N.
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T=0

Figure: L = 20, 0 < t < 30, 6 unstable modes, € = 1075, numeric
simulation
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Figure: L = 20, 0 < t < 30, 6 unstable modes, e = 107%, full hypercube
finite-gap approximation
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T=0

Figure: L = 20, 0 < t < 30, 6 unstable modes, € = 1078, the difference
between the numerics and full hypercube finite-gap approximation times
1000. The difference on the left of the picture is likely to be a numerical
artifact
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The auxiliary linear problem

The auxiliary linear problem has the form:

LU, x, 1) = V(A x, 1),

i0x u(x,t)
—u(x,t) —idy

o

The operator £ is not self-adjoint, and the spectrum of this problem
typically contains complex points.
We consider the x-periodic problem for anomalous waves.:

u(x+ L, t) = u(x,t).

u(x,0) = a+ev(x), v(x+L)=v(x), le <1,

. . 2
vix) = Y (G + cje™). k=" Ial=O(1).
=1
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The spectral data

In the periodic theory of the NLS equation the following two spectral
problems are used to define the spectral data:

@ The spectral problem on the line, i.e. the spectral problem in L2(R).
It is also called the main spectrum.

@ The spectral problem on the interval [xo, Xo + L] with the following
Dirichlet-type boundary conditions:

V'(4,x0,1) = W'(4,x + L, t) =0.

This spectrum is called the auxiliary spectrum or divisor.

Remark. Many authors use the following symmetric boundary condition:
W (A, X0, 1) + W3(A, x0, 1) = W (4, %0 + L, 1) + W3(A, xo + L, 1) = 0.

This approach has the following advantage: all divisor points are located
in a compact area of the spectral curve, but it requires one extra divisor
point and increases the complexity of the formulas.
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The spectral curve

To define the spectrum of the problem on the line, it is convenient to
introduce the monodromy matrix. Consider the matrix equation

LU, x, o) = AW(A, X, to),

here U is a 2 x 2 matrix with the initial condition
~ 10
\U(/l, Xo, to) = [ 0 1 :| .

Then the monodromy matrix 'AF(/l, Xo, tp) is defined by:
4l\-(/l, X0, to) = \i/(/l, Xo+ L, to).

The eigenvalues and eigenvectors of T(A4, xo, fp) are defined on a
two-sheeted covering of the A-plane. This Riemann surface I is called
the spectral curve.

The spectral curve I is well-defined and does not depend on time. The
eigenvectors of T(4, X, ty) are the Bloch eigenfunctions of L
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Unperturbed spectral curve

Let e = 0. Then the spectral curve has the following structure:

2

" Unstable resonant
- .
A, points

Pt

Stable resonant N
points 2

The number of resonant points on the imaginary axis, corresponding to
the unstable modes of the linearised equation is finite. The number of
resonant points on the real axis, corresponding to the unstable modes of
the linearised equation is infinite.
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Perturbed spectral curve

I is invariant with respect to the complex conjugation.

Perturbations of real resonant points generate stable perturbations of
solutions. They can be neglected.

Perturbations of imaginary resonant points generate exponentially
growing perturbations of solutions.
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Finite-gap approximation

We keep all branch points and all divisor points located near the
imaginary axis, and we neglect all branch points and all divisor points
located near the real axis.
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Finite-gap approximation

Using the scaling x — o?x, t — at the generic case can be reduced to
the case up(x, t) = e?".

The number N of unstable modes is given by:
L
/8

T, ki
¢j:arccos(zj):arccos > j=1,...,N.

Let us denote

Then
Aj = isin(¢)), pj = cos(¢y), o = 2sin(2¢;),

— e(c = e2%ic_. — el = e 2%ic,
aj = e(c, -e /c_,), B = e(c_, —-e fc,),

where o is the linear increment of the unstable mode:

oj = K 4—kj2, 1<j<N,
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Spectral data for a small perturbation of the constant

solution

Let us define:
@j = (E/ — (4 + /lj)zc—j), B = (C_—, — (i - /lj)2cj),

u,-:”rf, 4= Ji2—1, Redj+ImA >0, j=1.2,...c0.

Theorem (Direct spectral transform):

Eo=i+0(?), B =A% % JaB + 0(&), 1=2j-1.2j,
j

Alyn) = Ao+ 4—; [@n +Ba] + O(€2), P(¥n) = —— [an - Ba] + O(?)

€
4yin
Here exp(xiLp(y,)) are the Bloch multiplies for the Dirichlet spectrum.
Homoclinic orbit in this approximation: «; # 0, §; = 0.
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The theta-functional solutions

A. R. lts., V. P. Kotljarov “Explicit formulas for solutions of the Nonlinear
Schrédinger equation” — Dokl. Ukrain. SSR, Ser. A, no. 11, (1976),

965-968.
_ 6(A(co_) - Uyx - Ust - A(D) - K)
ux-1) = 0(K(oo+)—U1x—Ugt—K(D)—K)X ©)
0(A(04) - A(D) - K) | - exo(2i 2
Xe(ﬁ(m_) ~A0)-R) u(0,0) - exp(2it)(1 + O(€%)),

0(21B) = > exp|2mi Y niz; + mZ bnmn|, jok=1,....9.
nj j

Here A(y) denotes the Abel transform, K is the vector of Riemann

constants, B denotes the matrix of periods, Uy, U, are some periods of

meromorphic differentials.
We need some explicit approximate formulas.
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Approximation of spectral curve

We use the following basis of cycles:
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The Riemann period matrix

For the matrix of period we obtain (here g = 2N):

€ oz/-ﬁj

| . vA o — B i
bj v Og[4sin(2¢j) cos(¢j)} +O(€), bjinjn bjj, 1<j<N,

Sin ¢I*($s)
1 2
by = — log —~ |+ O(€®) forall j# k.
COS(¢'J£¢S)
. €V 2 ;
bi) = — Yy <j<
exp (iby) 4 sin(2¢;) cos(¢)) TO(E). =i N,
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Final finite-gap formulas

One can choose integration path so that

6(Z.(x. 1)IB)
9(Z_(x.1)B)

7. (x, 1) = FA(co_) = Uyx — Upt — A(D)

u(x,t) = exp(2it) x (14 O(e)) (4)

1
2ri g[m]
_1_
4 2n
1 @,
- _l_¢_N > ﬁlog[ \(‘”’:’ﬁNl
Aleo) = | =45+ 0(e), A(D) = P P R
77 27 2q7 108 N
1w :
4 + 2 L.l g[e-zm,\,’BN]
2ni 1/:QNﬁN ]
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Final finite-gap formulas

r_cos(¢1) 1 ro_sin(241) 1
_coslge) _sin(265)
. _ co;(¢N) . _ sini2¢N)
U =|—aday |+ O(€), Uo =|—zdiy—| + O(€?),
_ cos]('(ﬁz) siné(pg)

9(Z|B) = Zexp 27TIZ anj+ﬂiZ bjknjnk , ],k =1,...,2N.
j jik

n
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Final finite-gap formulas

Here:
N is the number of unstable modes:

T, ki .
¢j:arccos(zj):arccos 2] j=1,...,N,

Aj=isin(¢;), yj = cos(¢;), oj = 2sin(2¢;),
aj = E(E/ — 921@07/'), Bi = E(C_,, - e_2'¢’Cj),

o is the linear increment of the unstable mode:

o-j':ij4_kj2’ 1S]SN,
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Final finite-gap formulas

For each t only one hypercube in the sum for the theta-function is
essential, and this hypercube can be calculated explicitly. Therefore the
time line is covered by intervals, and at each interval the solution can be

approximate by the N-breather one.

N




Remark. The appearance of “whiskered” tori in this problem was
discussed in the literature, see, for example:

McLaughlin, D., Overman, E. A. “Whiskered tori for integrable PDEs:
Chaotic behavior in near integrable PDEs”, In Surveys in applied
mathematics, Vol. 1, pp. 83-203 (1994). Plenum Press.

A. Calini, N. M. Ercolani, D. W. McLaughlin, C. M. Schober, “Mel’'nikov
analysis of numerically induced chaos in the nonlinear Schrédinger
equation”, Phys. D, 89:3-4 (1996), 227-260.

In particular, it was shown that the lengths of tori increases as log(le|),
but constants in the formulas were not calculated.
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One unstable mode

We derived approximate formulas for finite number N of unstable mode.
In particular, we proved that solutions at each time are well-approximated
by n-breather solutions (n < N), but different approximations at different
time intervals shall be used.

Let us discuss the first non-trivial case N = 1.
We assume: n/|al < L < 2r/|al i.e. we have exactly one unstable mode.

It corresponds to the following perturbation of the background:

i 2n
u(x,0) = a(1 + ¢(cie"* + c.re™¥)), Ky = Thoe<t,
where ¢y and c_ are arbitrary O(1) complex parameters.

Problem: Calculate the time of the first rogue wave appearance and its
position. Calculate the periodicity of appearances in terms of the Cauchy
data.

P. G. Grinevich, P.M. Santini



Akhmediev breathers

The unstable mode is described by Riemann theta functions of 2
variables.

But for this special Cauchy data it admits a good approximation as a
sequence of Akhmediev breathers (Grinevich—Santini).

Akhmediev breathers:

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first order
solutions of the Nonlinear Schédinger equation”, Theor. Math. Phys, 72,
809 (1987).

Ax,10,X,T) =
_a eg,'|a|2t ~cosh[or(6)(t — T) + 2i6] + sin 6 cos[k (6)(x — X)]
cosh[o(0)(t — T)] —sinfcos[k(8)(x — X)]

ki = k(6) = 2|alcos 6, o(0) = k(6) \/4lal? — k2(0) = 2|af® sin(26),
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Akhmediev breathers

They are spatially periodic and localized in time:

INTSGrapY

The x coordinate axis marked red, the t coordinate axis marked green. In
the future we draw only one period of solution with respect to x.
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Single Akhmediev (Akhmediev-Eleonskii-Kulagin) breather (L = 6).
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One unstable mode

Generic solution for one unstable mode is well-approximated by a
sequence of Akhmediev breathers:

Recurrence of Akhmediev breathers for one unstable mode (L = 6).
Here we draw exactly one period in the x-variable.
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One unstable mode

At
60 ~ Golored Graph: 20|
AT ——
N
T(O)/ e 1
0.3 7~ H 3
X(O) AX

Recurrence of Akhmediev breathers for one unstable mode (L = 6).

Essential parameters:
@ First appearance time T();
@ position of maximum at first appearance X(©);
@ interval between subsequent appearances AT;
© phase shift between subsequent appearances AX.
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One unstable mode

Approximation of the genus 2 solution:

Y (m) (m)\aipm 1= e oiapt
U(X, t): Zﬂ(x, t;¢1,X ,t )ef —mae , X € [O,L],
m=0

where:

XM = x4 (m-1)ax, ™ =704 (m-1)AT,

L arg(ap)

x) _28¥ | = Ax_ L
PR P (mod L),
1 o2 1 ot

T = —| ! AT = — log| ——
o 8 2lal*ele| )’ ol °8 4|aBe?|ap| )’

T-7 1
(m) _ _ — —
o 2¢1 + (m—1)4¢y, n { AT + 2},

T 2n [ .
C05¢1 = m, k1 = T = 2|a|cos(¢1), o1 = k1 4|a|2 - k12 = 2|a|2 sm(2¢1),

a=e""ci-e%cy, B=e"Cty-e e
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One unstable mode

'I_'he_spectra curve has genus g = 2 and 6 branch points: Ey, E1, Eo, E,,
E;, E>. The pair E4, E; is obtained as a results of splitting the resonant
point Ay = ila|sin ¢1:

2
€la
Ej= A1+ (—1)’% VaB + 0(é?), 1=1,2,
1
Eo¥s i|al *Eg=i|a]
E, IXE |
E ¥\, E %),
_)LﬁEb _)szﬂi4 F‘?)f E;T ) )
S R O T
E ¥\, E, %A,
E, *E,|
£ Al +E= —ilal

0

Figure: Right: the exact spectrum; Left: the approximating curve.

P. G. Grinevich, P.M. Santini



Extension to two spatial dimensions

In some situations, the one-dimensional approximation may be not
relevant from the physical point of view. For example, ocean waves are
essentially two-dimensional.
Problems:

@ The list of integrable equations in 2+1 is much shorter;

@ The multidimensional soliton systems are usually non-local;

@ In the finite-gap approach one has to work with generic Riemann
surfaces instead of ramified coverings (Krichever). It results in
additional technical difficulties.

Our aim: to extend the aforementioned results to 2 spatial dimensions.

Why Davey-Stewardson equation?
@ Itis a completely integrable 2+1 sysytem;
@ At least some of real forms of this equation arise in physics;

@ One of the real forms admits rogue waves type solutions. We hope
this real form is also physically relevant.

P. G. Grinevich, P.M. Santini



Davey-Stewardson equation

Davey-Stewardson equation - an integrable 2+1 system:

= 1,

iUt + U —VPUyy +20qu =0, n==+1, v
2 A2 2 (12
Goc + 2y = (1), — 2 (IuF) .
u=u(x,y,t)eC, g=q(x,y,t) eR,
Zero-curvature representation:
vy = ioslx + U,
'7/_;1‘ = 2ia—3¢—’)XX + 2U‘r/—;x + Vl/_;’

where

(1 0 (0 wu | -n(w—iq) Uy — ivuy
(’3_(0 —1)’ U‘(—nu o)’ V_(—n(Ux+iva) —n(w + ig))”

ywy = (q = uP)x, Wx = —v(q+ |uf?),.
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Real forms of Davey-Stewardson equation

NLS:
iU+ Uy 2020 =0, u = u(x,t),

DS:

If u(x, y, t) does not depend on y, DS coincide with NLS.
@ DS1: v =, the spectral problem is hyperbolic;
@ Defocusing DS2: v = 1, n = —1 the spectral problem is elliptic;
@ Focusing DS2: v = 1, n = 1 the spectral problem is elliptic;

For the focusing DS-2 with the doubly-periodic boundary conditions our
program can be fulfilled (Grinevich-Santini).
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Effect of non-locality

DS2 equation is non-local, and the non-local term is defined by:

— (Y — (12
Goc + Gy = (1)~ (1uF),, -
therefore the function q is defined up to an arbitrary integration constant

a(x,y,t) = q(x, y,t) + f(1).

This change of integration constant corresponds to the standard gauge
transformation:

u(x,y,t) = u(x,y,t)exp (—ig ft f(T)dT).

Without loss of generality we may assume

ff q(x,y,t)dxdy = 0, forall t.
T2
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Periodic problem for 2-D Dirac operator and DS2 solutions were studied
in a series of works by Taimanov (partially in joint works with S.P. Tzarev
and R.M. Matuev).

Application to the geometry of tori in R® and R*;
Proof of the existence of spectral curve using Keldysh theorem;

Generation of singular solutions as a result of conformal
transformations of R*;

Construction of DS2 solutions using Moutard transformations;

The role of curves with double points in the theory of regular
doubly-periodic potential. We show that these points correspond to
unstable modes/

Direct spectral transform for doubly-periodic 2-D Schrddinger operator
was developed by Krichever. We essentially follow his approach.
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Cauchy problem for anomalous waves

We assume that the Cauchy data is a small perturbation of a constant
solution

u(x,y,0) = a+ew(x,y), eeR, e<x1,
Vo(x + Lx,¥) = vo(x, ¥ + Ly) = vo(x, ).

Decompose vy(X, ¥) into Fourier series:

VO(X, y) = Z Cran, ef(kxx'*‘ky}’)’

nx,ny#(0,0)
where

T
kx = ny—, k, = nXL—, Ny, Ny € Z.
y
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Direct spectral transform

The spectral curve cam be obtained by attaching thin handles to
resonant pairs:

@ Resonant pairs corresponding to the unstable modes k2 + ky2 < 4:

Ky + ik 4- K- K2
1= — I —= ] (5)
2 kK + kZ
kil | [4-KZ—KZ
= =+ _— = =1
T2 5 i KZakE | IT1] = |72

@ Resonant pairs corresponding to the stable modes k2 + kf >4 ;

i 2 2
T1:M 1+ kit k-4 Tzz_l (6)
2 kZ+ k2 | 7y

In our approximation we keep only the unstable modes.
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Example: Let L, = 27/1.2, L, = 2n/1.4. Then k, = 1.2ny, k, = 1.4n,:

Figure: Resonant pairs for -3 < n, <3,-3<n, <3.
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Direct spectral transform

The basic cycles on the unperturbed curve:

Figure: On the right: the system of a and c-cycles for this example. On
the left: the corresponding system of a and b cycles. Here:

bj =Cj— Z(Cj o Ck)Ck,

k>j

P. G. Grinevich, P.M. Santini



Direct spectral transform

The perturbed curve: we cut the T-plane along the intervals (E2,_1 s Egj).
For each resonant pair (751, 72;) We glue the borders of the cuts
(E4j_3, E4j_2) and (E4j_2, E4/'). The point E4j_3 is glued to E4j_1, and the
point E4j_» is glued to E4;. The cycle g; is the oval surrounding the cut
(Esj-2, E4j) and oriented counterclockwise, the cycle ¢; is the union of
oriented intervals [E4j_3, 0] and [0, E4j_1], the cycles b; are as above.

Figure: The perturbed curve. The borders of the cuts (E;, Ez) and
(Es, Es) are glued to the borders of the cuts (Es, E4) and (E7, Eg)
respectively.
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Direct spectral transform

Denote: _ _
i Cj + T2j—1T2jCj o C_j + TojT2j-1Cj @
! 2Qpj 1 P 20y ’
Theorem:
4 2T21Qy
Esjoask = Toi1 + (-1 ' — <z \JaB;, 8)

iIm(T2j7_'2j_1 )

4 272Qoj1
Egjok = Toj1 + (=1)" 1m3\/0‘/ j> o

Theorem: In the leading order:

oA To ot Oor
bj = log &2 _ 2j _11 2jq2j-192j Zafjﬂj ’
Im® (7275 4 )(T2j-1 — T2))
Toi — Tok )(T2jo1 — Tok—
by :Iog[( 2j — Tok ) (T2j—1 — Tk 1)}’ k]
(T2j — T2k-1 )(sz-1 - Tzk)
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Leading order solution

(A (c02) + W,z + Wsz + Wit — A(D) - K)

U = o Rloon) & Vioz 1 Wioz + Wt — A(D) —R)’
where

0 k#j

[/Kqua(yf)]k = { Iog[\/‘%] k :j~
(Wz),-:é[fzj—fzj—d, (Wz),-:é[fzj—sz—d, )
(Wt)j = Im(ng—1 - ng)’ (10)
Aj(00p) — Aj(c01) = log [7-2]—_1} = log [12j-172;] - (11)

T2j
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Vector of Riemann constants

bji
K = = — i+ AEqa) + O(e).

T2jej
Ai(E4i_3) = —log|e VaBil,
i(Fai) g[ iTm(ro75! () (121 = 72)) 1'8]
T2j—1T2i(2j- i
by = log |6 —5— _11 L ajBj| .
Im® (7750 ) (721 — 72))?

Remark. We used the non-symmetric normalization of the wave function
V'(y,0,0) = 1. The potential is defined by the spectral data up to an
arbitrary phase factor (). It is in good agreement with the DS-2 gauge

freedom.
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