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Introduction

Let

K be a field equipped with a set V of discrete
valuations;

G be an absolutely almost simple algebraic K-group

(typically simply connected or adjoint)

We are interested in

K-forms of G that have good reduction at all v ∈ V .
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Introduction

• a K-group G′ is a K-form (or K/K-form) of G if

G′ ⊗K K ' G ⊗K K.

Examples.

1. If A is a central simple algebra of degree n

over K, then G′ = SL1,A is a K-form of G = SLn.

2. If q is a nondegenerate quadratic form in n variables
over K (charK 6= 2) and

G = Spinn(q),

then for any other nondegenerate quadratic form q′ in n
variables,

G′ = Spinn(q′)

is a K-form of G.

If n is odd then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms

over noncommutative division algebras.
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Introduction

• G has good reduction at a discrete valuation v of K

if there exists a reductive group scheme G over valuation

ring Ov ⊂ Kv such that

1 generic fiber G⊗Ov Kv is isomorphic to G⊗K Kv;

2 special fiber (reduction) G(v) = G⊗Ov K
(v) is

a connected simple group (of same type as G)

(K(v) residue field)

Remark. Similarly one defines good reduction for arbitrary

reductive groups (in particular, for tori).
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Introduction

Examples.

0. If G is K-split then G has a good reduction at any

v, with G provided by Chevalley construction.

1. G = SL1,A has good reduction at v if there exists an

Azumaya algebra A over Ov such that

A⊗K Kv ' A⊗Ov Kv

(in other words, A is unramified at v).

2. G = Spinn(q) has good reduction at v if

q ∼ λ(a1x
2
1 + · · ·+ anx

2
n) with λ ∈ K×v , ai ∈ O×v

(assuming that charK(v) 6= 2).
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Introduction

To make problem of characterizing forms with good

reduction meaningful one needs to specify K, V and/or G.

Most popular case: K field of fractions of Dedekind

ring R, and V consists of places associated with maximal

ideals of R.

In this context problem was considered by Harder and

Colliot-Thèléne.
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Introduction
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Introduction

Basic case R = Z:

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected
algebraic group over Q. Then G has good reduction at
all primes p if and only if G is split over all Qp.

Nonsplit groups with good reduction can be constructed

explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected
algebraic group over a number field K, and assume that
V contains almost all places of K. Then the number of
K-forms of G that have good reduction at all v ∈ V is
finite.
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Introduction

Case R = k[x], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible }.

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G0 be

a connected reductive group over k. If G′ is a K-form

of G0 ⊗k K that has good reduction at all v ∈ V then

G′ = G′0 ⊗k K
for some k-form G′0 of G0.
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Introduction

Case R = k[x, x−1], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible, 6= x }.

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G0 be a
connected reductive group over k. Then K-forms of
G0 ⊗k K that have good reduction at all v ∈ V are in
bijection with H1(k((x)) , G0).

This was used to prove conjugacy of Cartan subalgebras in

some infinite-dimensional Lie algebras.
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Introduction

We initiated analysis of higher-dimensional situation.

Let K be a finitely generated field,

Pick a model X = SpecA for K, where A is
a finitely generated integrally closed Z-algebra with
fraction field K,

Let V be set of places associated with
prime divisors on X (divisorial set).

Finiteness conjecture

Let G be an absolutely almost simple algebraic group over

a finitely generated field K, and let V be a divisorial

set of places of K.

Set of isomorphism classes of K-forms of G that have

good reduction at all v ∈ V is finite (at least when char k

is “good”).

Andrei Rapinchuk (University of Virginia) Minsk June 2022 12 / 46



Introduction

This conjecture has implications for

analysis of algebraic K-groups with same isomorphism
classes of maximal K-tori (genus problem)

analysis of weakly commensurable Zariski-dense subgroups

(these techniques were used in work with Prasad (Publ.

math. IHES 109(2009), 113-184) to prove commensurability of

some isospectral locally symmetric spaces)

properness of global-to-local map

H1(K,G) −→
∏
v∈V

H1(Kv, G)

for adjoint groups

Finiteness conjecture is also related to finiteness of
unramified cohomology.
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Division algebras with the same maximal subfields

Consider the following question:

(∗) Let D1 and D2 be finite-dimensional central division

algebras over a field K. How are D1 and D2 related

if they have same maximal subfields?

• D1 and D2 have same maximal subfields if

degD1 = degD2 =: n;

for P/K of degree n, P ↪→ D1 ⇔ P ↪→ D2.
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Division algebras with the same maximal subfields

Geometry

Prasad-A.R.: In many (although not all) situations, two

arithmetically defined locally symmetric spaces having same

lengths of closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Underlying algebraic fact:

Let D1 and D2 be two quaternion division algebras

over a number field K. If D1 and D2 have same

maximal subfields then D1 ' D2.
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Division algebras with the same maximal subfields

However, most Riemann surfaces are not arithmetic ⇒

One needs to understand to what degree this fact extends

to more general fields

• Let H = { x+ iy | y > 0 }.

“Most” Riemann surfaces are of the form:

M = H/Γ

where Γ ⊂ PSL2(R) is a discrete torsion free subgroup.

• Some properties of M can be understood in terms of

associated quaternion algebra.
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Division algebras with the same maximal subfields

Let

• π : SL2(R) → PSL2(R);

• Γ̃ = π−1(Γ) ⊂ M2(R).

Set AΓ = Q[Γ̃(2)], Γ̃(2) ⊂ Γ̃ generated by squares.

One shows: AΓ is a quaternion algebra with center

KΓ = Q(tr γ | γ ∈ Γ(2))

(trace field).

(Note that for general Fuchsian groups, KΓ is not necessarily

a number field.)
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Division algebras with the same maximal subfields

• If Γ is arithmetic, then AΓ is the quaternion algebra

involved in its description;

• In general, AΓ does not determine Γ, but is an

invariant of the commensurability class of Γ.

To a (nontrivial) semi-simple γ ∈ Γ̃(2) there corresponds:

• geometrically: a closed geodesic cγ ⊂ M ,

if γ ∼ ±
(
tγ 0
0 t−1

γ

)
(tγ > 1) then length `(cγ) = 2 log tγ ;

• algebraically: a maximal etale subalgebra KΓ[γ] ⊂ AΓ.
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Division algebras with the same maximal subfields

For a Riemannian manifold M :

L(M) = set of lengths of closed geodesics in M

((weak) length spectrum of M)

Definition.

Riemannian manifolds M1 and M2 are

• iso-length spectral if L(M1) = L(M2);

• length-commensurable if Q · L(M1) = Q · L(M2).
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Division algebras with the same maximal subfields

Let Mi = H/Γi (i = 1, 2) be Riemann surfaces.

If M1 and M2 are length-commensurable then:

1 KΓ1 = KΓ2 =: K;

2 Given closed geodesics cγi ⊂ Mi for i = 1, 2 such that

`(cγ2)/`(cγ1) = m/n (m,n ∈ Z)

elements γm1 and γn2 are conjugate ⇒

K[γ1] ⊂ AΓ1 and K[γ2] ⊂ AΓ2 are isomorphic.

So, AΓ1 and AΓ2 share “lots” of maximal etale subalgebras.

(Not all – but we will ignore it for now ...)
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Division algebras with the same maximal subfields

• For M1 and M2 to be commensurable, AΓ1 and AΓ2

must be isomorphic.

So, proving that length-commensurable M1 and M2 are

commensurable implicitly involves answering a version of (∗).

Theorem

Let Mi = H/Γi (i ∈ I) be a family of length-commensurable

Riemann surfaces where Γi ⊂ PSL2(R) is finitely generated

and Zariski-dense. Then quaternion algebras AΓi (i ∈ I)

split into finitely many isomorphism classes (over common

center).
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Division algebras with the same maximal subfields

Algebra

Amitsur’s Theorem

Let D1 and D2 be central division algebras over K.

If D1 and D2 have same splitting fields, i.e. for F/K
we have

D1 ⊗K F 'Mn1(F ) ⇔ D2 ⊗K F 'Mn2(F ),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields

(function fields of Severi-Brauer varieties), which are

infinite extensions of K.

Can one prove Amitsur’s Theorem using only splitting

fields of finite degree, or just maximal subfields?
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Division algebras with the same maximal subfields

• Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

This leads to question (∗) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)
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Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over
K. The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single

element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;

genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)
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Genus of a division algebra

Theorem 1 (Stability Theorem)

Let char k 6= 2. If |gen(D)| = 1 for every quaternion algebra D
over k, then |gen(D′)| = 1 for any quaternion algebra D′

over k(x).

• Same statement is true for division algebras of exponent 2.

• |gen(D)| > 1 if D is not of exponent 2.

• gen(D) can be infinite.

Construction yields examples over fields that are infinitely

generated

( in fact, HUGE )
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Genus of a division algebra

Theorem 2.

Let K be a finitely generated field. Then for any

central division K-algebra D the genus gen(D) is finite.

• Proofs of both theorems use analysis of ramification

and info about unramified Brauer group.

Basic fact: Let v be a discrete valuation of K, and

n be prime to characteristic of residue field K(v).

If D1 and D2 are central division K-algebras of

degree n having same maximal subfields, then either

both algebras are ramified at v or both are unramified.

(When n is divisible by char K(v), we need some additional
assumptions)
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Genus of a division algebra

• Recall that a c. s. a. A over K (or its class [A] ∈ Br(K))

is unramified at v if there exists Azumaya algebra A/Ov
such that

A⊗K Kv ' A⊗Ov Kv.

If (n , charK(v)) = 1 or K(v) is perfect, there is a residue
map

rv : nBr(K) −→ H1(G(v),Z/nZ),

where G(v) is absolute Galois group of K(v).

• Then x ∈ nBr(K) is unramified at v ⇔ rv(x) = 0.

Given a set V of discrete valuations of K, one defines
corresponding unramified Brauer group:

Br(K)V = { x ∈ Br(K) | x unramified at all v ∈ V }.
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Genus of a division algebra

• To prove Theorem 1 (Stability Theorem) we use:

if K = k(x) and V = set of geometric places, then

nBr(K)V = nBr(k)

when (n , char k) = 1 (Faddeev)

• There are two proofs of Theorem 2. Both show that for

a divisorial set of places of a finitely generated field K

one can make some finiteness statements about unramified

Brauer group.

More recent argument works in all characteristics, but
gives no estimate of size of gen(D).

Earlier argument works when (n , charK) = 1, gives
finiteness of nBr(K)V and estimate

|gen(D) | 6 | nBr(K)V | · ϕ(n)r

where r is number of v ∈ V that ramify in D.
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Genus of a division algebra

Question. Does there exist a quaternion division algebra

D over K = k(C), where C is a smooth geometrically

integral curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

• One can construct examples where 2Br(K)V is “large.”
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Genus of a simple algebraic group

• To define the genus of an algebraic group, we replace

maximal subfields with maximal tori in the definition of

genus of division algebra.

Let G1 and G2 be semi-simple groups over a field

K. G1 & G2 have same isomorphism classes of

maximal K-tori if every maximal K-torus T1 of G1

is K-isomorphic to a maximal K-torus T2 of G2,

and vice versa.

Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori as

G.
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Genus of a simple algebraic group

Question 1′. When does genK(G) reduce to a single
element?

Question 2′. When is genK(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected
algebraic group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1 (n > 1) or E6,
then |genK(G)| = 1.

Conjecture. (1) For K = k(x), k a number field, and

G an absolutely almost simple simply connected K-group

with |Z(G)| 6 2, we have |genK(G)| = 1;

(2) If G is an absolutely almost simple group over a

finitely generated field K of “good” characteristic then

genK(G) is finite.
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Genus of a simple algebraic group

“Unramified division algebras”  “groups with good reduction”

Theorem 3.

Let G be an absolutely almost simple simply connected

group over K, and v be a discrete valuation of K.

Assume that K(v) is finitely generated, and charK(v) 6= 2

if G is of type B`.

If G has good reduction at v then every G′ ∈ genK(G)
has good reduction at v.

V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, Simple algebraic

groups with the same tori, weakly commensurable Zariski-dense

subgroups, and good reduction, arXiv:2112.04315
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Genus of a simple algebraic group

Let K be a finitely generated field, and V be a
divisorial set of places of K.

Corollary.

Let G be an absolutely almost simple simply connected

K-group. There exists a finite subset S ⊂ V (depending

on G) such that every G′ ∈ genK(G) has good reduction

at all v ∈ V \ S.

So, truth of Finiteness Conjecture for a given G and any

divisorial V implies finiteness of genK(G).
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Genus of a simple algebraic group

A theorem of Raghunathan-Ramanathan extends Faddeev’s
result to reductive algebraic groups.

Applying it in conjunction with Theorem 3, we obtain

Theorem 4.

Let G be an absolutely almost simple algebraic group

over a finitely generated field k of char 6= 2, and let

K = k(x). Then any H ∈ genK(G ×k K) is of the form

H = H0 ×k K for some H0 ∈ genk(G).

In particular, if k is a number field then for

L = k(x1, . . . , xr),

genus genL(G×k L) is finite, and in fact is trivial if G
is of type different from An, D2n+1 (n > 1) or E6.
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Results on the Finiteness Conjecture and applications

• Finiteness Conjecture is true for inner forms of type An
over any finitely generated field provided that

(n+ 1 , char k) = 1.

For other types there are additional challenges:

− it is not known how to classify all forms in terms

of cohomological invariants

− cohomological approach depends on finiteness of unramified

cohomology, which is not known in general case in

dimension > 2.

Following Kato, by 2-dimensional global field we mean
function field of:

• smooth curve defined over a number field, or

• smooth surface defined over a finite field.
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Results on the Finiteness Conjecture and applications

• Finiteness Conjecture is true for spinor groups Spinn(q)
of quadratic forms over 2-dimensional global fields of
characteristic 6= 2.

Proof consists of two parts:

• Using Milnor’s conjecture proved by Voevodsky, one reduces
problem to proving finiteness of unramified cohomology
groups Hi(K,µ2)V ;

• Proof of finiteness of Hi(K,µ2)V for all i > 1 for
2-dimensional global field K and divisorial set of places
V .

• Finiteness conjecture is also true for simple groups of
types An, Cn, Dn, F4 and G2 over 2-dimensional global fields
that split over a quadratic extension of base field.
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Results on the Finiteness Conjecture and applications

• There are also finiteness results over purely transcendental
extensions of global fields and function fields of Severi-
Brauer varieties.

We will now discuss some applications of these results to
finiteness of genus and properness of global-to-local map in
Galois cohomology.

Theorem 5

Let G = Spinn(q) (n > 5) where q is a nondegenerate

quadratic form over a 2-dimensional global field K with

charK 6= 2. Then genK(G) is finite.

Case of n odd follows directly from Theorem 4.

Case of n even was considered by I. Rapinchuk.
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Results on the Finiteness Conjecture and applications

Theorem 6

Let G be a simple algebraic K-group of type G2.

(1) If K = k(x) where k is a number field then

genK(G) is trivial.

(2) If K = k(x1, . . . , xr) where k is a number field then

genK(G) is finite.

Similar results are available for other types.

E.g., for K-forms of type F4, genus genK(G) is trivial if
K = k(x) where k is a number field, and is finite if K
is any 2-dimensional global field of characteristic 6= 2, 3.
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Results on the Finiteness Conjecture and applications

Let G be a linear algebraic group defined over a field K,

and let V be a set of valuations of K.

One considers global-to-local map in Galois cohomology:

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

We say that Hasse principle holds if θG,V is injective.

• HP is known to hold when K is a number field and

G is either simply connected or adjoint.

• HP may fail for arbitrary semi-simple groups over

number fields, but here θG,V is always proper, i.e. has

finite fibers.
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Results on the Finiteness Conjecture and applications

In recent years a lot of attention has been given to HP
over fields other than global. Colliot-Thèléne, Parimala ...
analyzed HP over function fields of p-adic curves.

Conjecture

Let G be a reductive algebraic group over a finitely

generated field K with a divisorial set of places V .

Then θG,V is proper.

Finiteness Conjecture for forms with good reduction for a

given adjoint G and any divisorial V ⇒ properness of

θG,V for any divisorial V .

Andrei Rapinchuk (University of Virginia) Minsk June 2022 44 / 46



Results on the Finiteness Conjecture and applications

It follows that θG,V is proper when:

1 G = PSL1,A where A is a c.s.a. of degree n over a
f.g. field K with charK prime to n

2 G = SOn(q) where q is a nondegenerate quadratic form
over a 2-dimensional global field K with charK 6= 2

3 G is of type G2 over a 2-dimensional global field K
with charK 6= 2

(where V is any divisorial set)

It turns out that θ is always proper for algebraic tori.

Theorem 7

Suppose K is a finitely generated field with a divisorial
set of places V . Then for any algebraic K-group D
whose connected component is a torus, θD,V is proper. In
particular, for any K-torus T , Tate-Shafarevich group

X(T, V ) := Ker(H1(K,T ) −→
∏
v∈V H

1(Kv, T ))

is finite.
Andrei Rapinchuk (University of Virginia) Minsk June 2022 45 / 46



Results on the Finiteness Conjecture and applications

Corollary

Let G be a connected reductive algebraic group over a f.g.
field K, and V be a divisorial set of places. Fix a
maximal K-torus T of G and let C(T ) denote set of
all maximal K-tori T ′ of G such that T and T ′ are
G(Kv)-conjugate for all v ∈ V . Then consists of finitely
many G(K)-conjugacy classes.

A.R., I.A. Rapinchuk, Linear algebraic groups with good
reduction, Res. Math. Sci. 7(2020), article 28.
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