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Memories from OPSO 2021 - Feynman path integrals

Assumption (Feynman, 1948)

The integral kernel ut(x , y) of any Schrödinger propagator U(t) = e−
i
ℏ tH with

quantum Hamiltonian H can be represented as a path integral:

ut(x , y) =

∫
e

i
ℏS[γ]Dγ,

where S [γ] =
∫ t

0 L(γ(τ), γ̇(τ), τ)dτ is the action functional (L being the
classical Lagrangian) corresponding to a path γ satisfying γ(0) = y and γ(t) = x .
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Memories from OPSO 2021 - Trotter sequential approach

Consider H = H0 + V with H0 = −∆/2. Recall two basic facts:

The integral representation for the free particle propagator

e−
i
ℏ tH0f (x) =

1
(2πℏit)d/2

∫
Rd

exp

(
i

ℏ
|x − y |2

2t

)
f (y)dy , f ∈ S(Rd).

The Trotter product formula: under suitable assumptions on the
potential V we have

U(t)f = e−
i
ℏ t(H0+V )f = lim

n→∞
En(t)f , f ∈ L2(Rd),

where the Feynman-Trotter approximate propagators are

En(t) =
(
e−

i
ℏ

t
n
H0e−

i
ℏ

t
n
V
)n
.

Combining the two results gives a representation of U(t) = e−
i
ℏ t(H0+V ) as

(strong) limit of a sequence of integral operators.
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Memories from OPSO 2021 - convegence of kernels?

... the limit exists and we may write

K (b, a) = lim
ϵ→0

1
A

∫
· · ·
∫ ∫

e
i
ℏS[b,a]

dx1

A

dx2

A
· · · dxN−1

A
(⋆)

[where A = (2πiℏϵ/m)1/2 and Nϵ = tb − ta] ...

... we shall write the sum over all paths in a less restrictive notation as

K (b, a) =

∫ tb

ta

e
i
ℏS[b,a]Dx(t) (⋆)

which we shall call a path integral.

— Feynman and Hibbs, Quantum Mechanics and Path Integrals (1965)
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Memories from OPSO 2021 - convegence of kernels?

... The Trotter product formula shows that the transition from (⋆) to (⋆)
can be made rigorously on the level of operators rather than integral
kernels, under suitable conditions on the potential V ...

— Folland, Quantum Field Theory - A Tourist Guide for Mathematicians (2008)
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Memories from OPSO 2021 - Feynman was right!

Set ℏ = 1/2π for convenience. Our problem:{
i∂tψ = 2πH0ψ

ψ(0, x) = f (x),

H0 = Qw, V ∈ FM(Rd).

where H0 is the Weyl quantization of a real quadratic form Q(x , ξ) on R2d

and V is the Fourier transform of a finite measure on Rd .

Nicola, Trapasso - Comm. Math. Phys. 2020

Let en,t(x , y) and ut(x , y) be the integral kernels of En(t) and U(t) resp.

For any fixed t ∈ R \ E (= up to exceptional times) we have

en,t , ut ∈ Cb(R2d) and

en,t → ut uniformly on compact subsets of R2d .
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A natural, interesting question

What about rates of convergences for en,t → ut?

What about rates of convergence for En(t) → U(t) in Ls(L
2(Rd))?

What about convergence in operator norm?

The lack of information in this connection is a well-known limitation of the
unitary Trotter formula – it is a qualitative strong convergence result that
can be hardly refined or extended to other topologies.

Are we able to tailor better time slicing approximate propagators,

still leading to pointwise convergence at the level of kernels,

also with precise rates of convergence?
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Some ingredients of the proof

H0 = Qw coincides with a metaplectic operator µ(St) ∈ U(L2(Rd))
associated with the classical flow St ∈ Sp(d ,R) in phase space.

Except for a set E, µ(St) can be represented as an integral operator (a
“quadratic” Fourier transform):

U0(t)f (x) = c(t)

∫
Rd

e2πiΦt(x ,y)f (y)dy ,

where Φt is a real quadratic form associated with St .

The quantum propagator evolves Gabor wave packets along the
classical flow: for any t ∈ R, N ∈ N there exists Ct,N > 0 s. t.

|⟨µ(St)π(z)g , π(w)g⟩| ≤ C (1 + |w − Stz |)−N , w , z ∈ R2d ,

where g ∈ S(Rd) and π(x , ξ)g(y) = e2πiy ·ξg(y − x), (x , ξ) ∈ R2d .
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The potential V (viewed as a function in Cb(Rd)) has a peculiar
phase space regularity. Precisely, its Gabor wave packet transform

VgV (x , ξ) = ⟨V , π(x , ξ)g⟩ =
∫
Rd

e−2πiy ·ξV (y)g(y − x)dy

belongs to L∞,1(R2d). Hence V ∈ M∞,1(Rd) (modulation space).

The Sjöstrand class is a Banach algebra of symbols: for every
σ ∈ M∞,1(R2d), the Weyl pseudodifferential operator

σwf (x) :=

∫
R2d

e2πi(x−y)·ξσ

(
x + y

2
, ξ

)
f (y) dydξ

is bounded on L2(Rd). Moreover, if σ1, σ2 ∈ M∞,1(R2d) then

σw
1 σ

w
2 = (σ1#σ2)

w, σ1#σ2 ∈ M∞,1(R2d).

The potential V× (viewed as a multiplication operator) is the Weyl
quantization of σV = V ⊗ 1 ∈ M∞,1(R2d).
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The Sjöstrand class is also a Banach algebra of complex-valued
functions under pointwise multiplication.

Set ρt/n := e−2πi t
n
σV . Then ρt/n ∈ M∞,1(R2d) and there exists

ρ0 ∈ M∞,1(R2d) with ∥ρ0∥M∞,1 ≤ C (t) such that

e−2πi t
n
V = ρw

t/n = I + 2πi
t

n
ρw
0 .

Metapletic operators combine well with (and only with!) Weyl
operators - the symplectic covariance property:

σwµ(S) = µ(S)(σ ◦ S)w.
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As a result, the Trotter approximation ops. can be expanded to obtain

En(t) =
(
e−2πi t

n
H0e−2πi t

n
V
)n

=
(
U0(t/n)ρ

w
t/n

)n
=

(
U0(t/n)

(
1 + 2πi

t

n
ρ0

)w)n

= U0(t)ρ
w
n,t ,

for suitable ρn,t in bounded subsets of M∞,1 (uniformly w.r.t. n), precisely

σn,t =
n−1∏
k=0

(
1 + 2πi

t

n

(
ρ0 ◦ Sk t

n

))
.
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Operators of the form T = µ(S)σw with σ ∈ M∞,1(R2d) are called
generalized metaplectic operators associated with S - we write
T ∈ FIO(S). In particular, we have that En(t) ∈ FIO(St).

FIO-type operators retain some of the properties of metaplectic ones:

FIO(St) ⊂ L(L2(Rd)) and FIO(S (1)) ◦ FIO(S (2)) ⊂ FIO(S (1) ◦ S (2))

Integral representations of En(t) (except for t ∈ E) are similar:

En(t)f (x) = c(t)

∫
Rd

e2πiΦt(x ,y)an,t(x , y)f (y)dy ,

now with an extra amplitude an,t(x , y) ∈ M∞,1(R2d).

En(t) are still well localized in phase space near the graph of St :

|⟨En(t)π(z)g , π(w)g⟩| ≤ Hn,t(w − Stz),

for some control function Hn,t ∈ L1(R2d).
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Just a happy coincidence?

Let H = H0 + V with H0 = Qw = µ(St) as above and V = σw
V for some

σV ∈ M∞,1(R2d) (e.g., σV = V ⊗ 1 with V ∈ M∞,1(Rd) as before).

It turns out that actually U(t) = e−2πit(H0+V ) ∈ FIO(St) as well!

This can be viewed using the standard perturbation method:

Recast the problem in integral form (Duhamel):

ψ(t, x) = U0(t)f (x)− 2πi
∫ t

0
U0(t − τ)σw

Vψ(τ, x)dτ.

Switch to interaction representation with φ(t, x) = U0(−t)ψ(t, x),
then use symplectic covariance and invariance of M∞,1:

φ(t, x) = f (x)− 2πi
∫ t

0
U0(−τ)σw

VU0(τ)φ(τ, x)dτ

= f (x)− 2πi
∫ t

0
(σV ◦ Sτ )
∈M∞,1

wφ(τ, x)dτ,
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The solution of the previous Volterra integral equation is then

φ(t, x) = αw
t f (x),

where the symbol αt has a Dyson-Phillips expansion:

αt = T exp

(
−2πi

∫ t

0
(σV ◦ Sτ )dτ

)
:= 1 +

∑
n≥1

(−2πi)n
∫ t

0

∫ τ1

0
· · ·
∫ τn−1

0

n∏
k=1

(σV ◦ Sτk ) dτn · · · dτ1.

We have that αt ∈ M∞,1(R2d) (algebra of symbols).

To conclude,
ψ(t, x) = U0(t)φ(t, x) = U0(t)α

w
t f (x),

hence the claim:
U(t) = U0(t)α

w
t ∈ FIO(St).
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Another look at the Schrödinger propagator

Motivated by the fact that U(t) = U0(t)α
w
t with

αt = T exp

(
−2πi

∫ t

0
(σV ◦ Sτ )dτ

)
∈ M∞,1(R2d)

= 1 +
∑
n≥1

(−2πi)n
∫ t

0

∫ τ1

0
· · ·
∫ τn−1

0

n∏
k=1

(σV ◦ Sτk ) dτn · · · dτ1,

we consider novel FIO-type short-time parametrices of the form

Ẽ (t) := U0(t)ρ̃
w
t ,

where

ρ̃t := exp

(
−2πi

∫ t

0
(σV ◦ Sτ )dτ

)
∈ M∞,1(R2d)

= 1 +
∑
n≥1

(−2πi)n
∫ t

0

∫ t

0
· · ·
∫ t

0

n∏
k=1

(σV ◦ Sτk ) dτn · · · dτ1.
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The resulting time-slicing approximation are then given by

Ẽn(t) :=
(
Ẽ (t/n)

)n
=
(
U0(t/n)ρ̃

w
t/n

)n
.

Arguments similar to those used before for handling the Trotter
parametrices eventually yield

Ẽn(t) = U0(t)ρ̃
w
n,t

for suitable ρ̃n,t in bounded subsets of M∞,1 (uniformly w.r.t. n).

This proves that Ẽn(t) ∈ FIO(St), as expected.
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Why this should be better?

Short summary: we are looking for FIO-type approximations of

U(t) = e−2πit(H0+V ) = U0(t)α
w
t ∈ FIO(St),

αt = T exp

(
−2πi

∫ t

0
(σV ◦ Sτ )dτ

)
.

Two options so far, respectively Trotter-type or “Dyson-type” parametrices:

En(t) = (U0(t/n)ρ
w
t/n)

n, ρt/n = exp
(
−2πi

t

n
σV

)
,

Ẽn(t) = (U0(t/n)ρ̃
w
t/n)

n, ρ̃t/n = exp

(
−2πi

∫ t/n

0
(σV ◦ Sτ )dτ

)
.

They have a crucially different short-time approximation power!

∥αt/n − ρt/n∥M∞,1 ≲t t/n, ∥αt/n − ρ̃t/n∥M∞,1 ≲t (t/n)
2.
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Main results - convergence of symbols

The better short-time behaviour allows one to obtain a nice control when
compositions are taken into account: recall that

U(t) = U0(t)α
w
t , Ẽn(t) = U0(t)ρ̃

w
n,t .

We obtain indeed

∥αt − ρ̃n,t∥M∞,1 ≤ C (t)

n
.

Note the loss of approximation power when dealing with compositions!

The proof relies on the generalization of an ingenious argument introduced
by D. Fujiwara to handle sophisticate path integral approximations obtained
by oscillatory integral operators (Duke Math. J., 1980).
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Main results - convergence of operators, with rates

The previous result allows us to obtain convergence Ẽn(t) → U(t) in the
norm operator topology, with precise rates of convergence:

∥U(t)− Ẽn(t)∥L2→L2 = ∥U0(t)α
w
t − U0(t)ρ̃

w
n,t∥L2→L2

≤ ∥U0(t)∥L2→L2∥αw
t − ρ̃wn,t∥L2→L2

≤ C1(t)C2∥αt − ρ̃n,t∥M∞,1 ,

hence

∥U(t)− Ẽn(t)∥L2→L2 ≤ C ′(t)

n
.
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norm operator topology, with precise rates of convergence:
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Main results - convergence of operators, with rates
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norm operator topology, with precise rates of convergence:
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Main results - convergence of kernels, with rates!

Recall that FIO-ops. have an integral representation:

U(t)f (x) =

∫
Rd

ut(x , y)f (y)dy , Ẽn(t)f (x) =

∫
Rd

ẽn,t(x , y)f (y)dy ,

where the kernels are functions in Cb(R2d) for non-exceptional times t ∈ E.

Let Ψ ∈ C∞
c (R2d) be a real-valued bump function. Then

∥[ut − ẽn,t ]Ψ∥FL1 ≲t,Ψ ∥αt − ρ̃n,t∥M∞,1 .

For any compact subset K ⊂ R2d and a bump function ΨK on K , we
obtain locally uniform convergence of kernels:

sup
z∈K

|ut(z)− ẽn,t(z)| ≲ΨK

C ′′(t)

n
.
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More details?

The talk is based on the papers:

Fabio Nicola and S. Ivan Trapasso

On the pointwise convergence of the integral kernels in the
Feynman-Trotter formula.

Comm. Math. Phys. 376 (2020), no. 3, 2277–2299.

S. Ivan Trapasso

On the convergence of a novel family of time slicing approximation
operators for Feynman path integrals.

Preprint arXiv:2107.00886 (2021)
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Hear ye, hear ye!

We are glad to announce a forthcoming monograph on these topics:

Fabio Nicola & S. Ivan Trapasso

Wave Packet Analysis of Feynman Path Integrals

To appear soon in the Springer series

Lecture Notes in Mathematics

Thank you for your kind attention!
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