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Main idea of stochastic limit

Basic physical intuition:

– In a large class of dynamical systems one can

naturally distinguish two time scales:

a slow and a fast one.

In the stochastic limit the two time scales are

separated and the intuition:

fast degrees of freedom ∼ pure noise

becomes literally true.

Separation of the two time scales ⇐⇒ :

– look at the fast degrees of freedom with the clock

of the slow degrees freedom.

Consequence:

the fast degrees of freedom seem to be infinitely

fast, i.e.

they look like pure noise (white noise)



The separation of time scales is achieved by com-

bining the two fundamental asymptotic

techniques of physics

– perturbation theory (small parameter),

– scattering theory (long times),

into a new asymptotic technique,

– stochastic limit (a ’parameter is

small with respect to times’)

λ→ 0 , τ →∞ but λ2τ → t (finite)

Equivalently

τ 7→ t/λ2 , λ→ 0

Not surprising emergence of wave and scattering

operators in more sophisticated models.



Framework in this talk: standard open system

scheme:

system + environment.

Moreover the environment will be of Boson type.

Basic ingredients of stochastic limit:



System

System free Hamiltonian.

Stochastic limit, simplest models: discrete spec-

trum

HS =
∑
k

εkPk (free system–Hamiltonian)

More complex models: continuous spectrum.

ρS, initial state of the system, is arbitrary.

HS –system Hilbert space



Observables of the environment.

To fix the ideas we take the observables of the en-

vironment to be given by the hermitean elements

of the CCR algebra CCR(H1) over a fixed environ-

ment 1–particle Hilbert space

H1 = L2(Rd) ; (d ≥ 3)

[ak, a
+
k′ ] = δ(k − k′) momentum representation

[af , a
+
g ] =

∫ ∫
dkdk′δ(k − k′)f̄(k)g(k′)

f, g ∈ L2(Rd) ≡ H1.

A scalar boson field is defined by a state ϕ on

this algebra.

ϕ, the initial state of the environment,

determines the state space of the environment

(cyclic representation).



ϕ Gaussian states

gauge invariant

ϕ(a+
fj
· a+
fk

) = ϕ(a−fj · a
−
fk

) = 0

covariance

ϕ(a+
f ag) = 〈g,Nf〉

our covariances are diagonal in momentum space:

Nf(k) = Nkf(k) ; n ≥ 0

Meaning of N (in distribution sense)

〈a+
k ah〉 := ϕ(a+

k ah) = δ(k − h)Nk〈a
+
k ak〉

mean density of quanta at momentum k.



Summing up the covariance(
〈a+
k ah〉 0

0 〈aka
+
h 〉

)
=

(
Nk 0

0 1 +Nk

)
δ(k − h)

=:

(
non–Fock term 0

0 Fock term

)
Equilibrium and non–equilibrium states.
N(k) is a positive function ⇒ one can always write
N(k) in the form

N(k) =:
1

eβ(k) − 1
(non–linear Planck factor)

where

β(k) := lg
N(k) + 1

N(k)
> 0

Momentum (frequency) dependent inverse
temperature.

Suppose that
the function N(k) depends only on ω(k):

N(k) → N(ω(k))



Then the same will be true for β(k), i.e.

β(ω(k)) := lg
N(ω(k)) + 1

N(ω(k))
> 0

and that the function β is linear

β̃(ω(k)) = β · ω(k) (β a constant) > 0

Then non–linear Planck factor is reduced to the

usual Planck factor:

N(ω(k)) =
1

eβ(ω(k)) − 1
=

1

eβ·ω(k) − 1



Fundamental open problem for physics: can non–

equilibrium states be experimentally realized?

(At least for some special choices of the function

N(k) or, more likely N(ω(k))).

If the answer to the above question is ’yes’,

then several quite non–trivial experimental

predictions of the stochastic limit can be

experimentally checked.

In the following I will describe one of these predic-

tions which leads to a natural local equilibrium

extension of a fundamental principle of equilibrium

statistical physics:

the principle of detailed balance.



Dynamics

HE := ΓBos(H1) (environment free Hamiltonian)

is the 2–d quantization of

H1 := ωk (1–particle environment free Hamiltonian)

in momentum representation (k ∈ Rd).

(H1f)(k) = ωkf(k)

multiplication operator, in momentum space, by

the dispersion function ωk.

Typical examples

ωk = |k| (non–relativistic QED)

ωk = |k|2/2m

(non–relativistic gas of mass–m particles).

In solid state physics, many more examples.



Initial state of the compound system

ρ = ρS ⊗ ϕ

HS ⊗ Γϕ(H1) – space of the compound system



Interaction Hamiltonian, weak coupling case

H
(λ)
I := λHI

λ is a small parameter.

ϕλ := ϕ independent of λ

Total Hamiltonian

H
(λ)
tot := HS ⊗ 1 + 1⊗H0 + λHI



Evolutions
– Schrödinger evolution operator at time t

in interaction representation:

U(λ)(t) := eitH0 · e−itH
(λ)
tot (1)

Schrödinger equation in interaction representation

∂tU
(λ)
t = −iH(λ)

I (t)U(λ)
t ; t ≥ 0

with initial condition

U
(λ)
0 = 1

– Separation of time scales

t→ t/λ2 ; λ→ 0

∂tU
(λ)(t/λ2) = −iH(λ)

I (t/λ2)U(λ)
t/λ2

Simplest example:

H
(λ)
I (t/λ2) =

∑
ω

(
Eω ⊗ at/λ2,k,ω + h.c.

)

at/λ2,k,ω :=
1

λ
e
−i t

λ2(ω(k)−ω)
ak



Results of the stochastic limit. As λ→ 0:

1) Evolved rescaled fields → white noise:

at/λ2,k,ω :=
1

λ
e
−i t

λ2(ω(k)−ω)
ak −→ bω(t, k)

satisfying the commutation relations

[bω(t, k), b†
ω′(t
′, k′)] = δω,ω′2πδ(t−t

′)δ(k−k′)δ(ω(k)−ω)



2) states of the field → states of the white

noise:

if the initial state of the field is a mean zero gauge

invariant Gaussian state with correlations:

〈a†kak′〉 = N(k)δ(k − k′)

then the state of the limit white noise will be of

the same type with correlations

〈b†ω(t, k)bω′(t
′, k′)〉 = δω,ω′2πδ(t−t

′)δ(k−k′)δ(ω(k)−ω)N(k)

〈bω(t, k)b†
ω′(t
′, k′)〉 =

= δω,ω′2πδ(t− t
′)δ(k − k′)δ(ω(k)− ω)(N(k) + 1)

Notice that the states live on different algebras,

but they are both gaussian and both with the

same density of quanta N(k).



3a) Schrödinger evolution → White noise

evolution

U(λ)(t/λ2)→ Ut

3b) Schrödinger equation → White noise

Hamiltonian equation

∂tU(t) = −iH(t)Ut (WN Schödinger eq.)

3c) Heisenberg evolution

(U(λ)(t/λ2))∗XU(λ)(t/λ2)→ U∗tXUt =: jt(X)

– White noise Heisenberg equation:

∂tU(t)∗XU(t) = −i[H(t), jt(X)]

for the evolution of observables X of the test

particle.

The new equations are:

– Singular equations:

H(t) ′′ =′′ H(δ(t))



– But you can read in these equations a lot of new

physical phenomena:

this was impossible with the original equations.

Usual operator methods can say very little on these

singular equations.



Theorem (Accardi, Lu, Volovich)
White noise Hamiltonian equations
are equivalent to
stochastic differential equations
(classical or quantum).
More specifically:
White noise Hamiltonian equation ≡
Stochastic Schrödinger equation;
White noise Heisenberg equation ≡
Stochastic Schrödinger equation;

The proof of the equivalence is quite non–
trivial.

This is true (and new) also in the classical case.
From the mathematical point of view, this is one
of the basic results of SL theory.
It proves the equivalence of the physicist approach
to stochastic calculus (which is based on distribu-
tion theory) with the mathematical approach (which
is based on semi–martingales).
It has opend the way to a multi–dimensional
stochastic calculus.



Connection with Markov semi–groups:

From SDE, via quantum Feynman–Kac

formula,

E
(
U(t)∗XU(t)

)
= Trenvir(U(t)∗XU(t))

= P t(X) = etL(X)

you get Markov semi–groups .

Differential description:

∂tP
t(X) = L(P t(X))

master equation.



From where do the re–scaled fields come?

at/λ2,k,ω :=
1

λ
e
−i t

λ2(ω(k)−ω)
ak

Answer: from the Heisenberg evolution of ak

(U(λ)(t/λ2))∗akU
(λ)(t/λ2) =

1

λ
e
−i t

λ2(ω(k)−ω)
ak

Notice that the maps

X 7→ ut/λ2(X) := (U(λ)(t/λ2))∗akU
(λ)(t/λ2)

are ∗–automorphisms, i.e.

ut/λ2(XY ) = ut/λ2(X)ut/λ2(Y ) ; ut/λ2(X∗) = ut/λ2(X)∗

(2)
and that the convergence result

1

λ
e
−i t

λ2(ω(k)−ω)
ak −→ bω(t, k)

can be written as

ut/λ2(ak) −→ bω(t, k)

Therefore it is natural to expect that

ut/λ2(a+
k ak) = ut/λ2(a+

k )ut/λ2(ak) −→ b+ω (t, k)bω(t, k)



Main improvement of SL over previous

techniques

In the SL one obtains the full unitary

(reversible) evolution,

not only the reduced (irreversible) evolution.

SL can solve problems that in previous theories

cannot even be formulated.

For example:



– decay of transition probabilities

|〈ΦS,E, UtΦS,E〉|2 (3)

Even in the simplest cases, when

ΦS,E = ΦS ⊗ΦE

this becomes

TrS,E
(
U∗t

(
ΦSΦ∗S ⊗ΦEΦ∗EUt

))
(4)

and this cannot be calculated if you only have in-

formation on the master equation, because in this

case you are limited to expectation values of the

form:

TrS,E
(
U∗t

(
ΦSΦ∗S ⊗ 1EUt

))
(5)

= TrS
(
P t
(
ΦSΦ∗S

))



Most important: one can compute the time evolu-

tion of the slow observables of the environment

not only the observables of the system.

This opens new possibilities for physics.

Let me illustrate this with an example having to do

with non–equilibrium statistical mechanics.



Time evolution of the slow observables of the

environment: Currents and micro–currents

Let

nk = a
†
kak ; k ∈ Rd

be the number operator density.

The stochastic limit allows to calculate its time

evolution U
†
t nkUt.

The expectation value of U†t nkUt
with respect to the initial state of

the system and noise,

〈U†t nkUt〉 := (Tr(ρ · )⊗ ϕ) (U†t nkUt)

gives the mean number of quanta at time t.

Its time derivative defines

the current density of quanta

J(t, k) :=
d

dt
〈U†t nkUt〉



Using quantum Ito formula one finds

J(t, k) =
d

dt
〈U†t nkUt〉 = 2

∑
εm>εn

δ(ω(k)− (εm − εn))

π|gω(k)|2((N(k) + 1)ρmm(t)−N(k)ρnn(t))

where ρmm(t) are the (diagonal) matrix elements,

in the eigen–vectors of the free system Hamiltonian

of the initial state ρ of the system time–evolved

with the reduced evolution (Markov semi–group).

Thus the number current density is a sum of

microscopic quanta currents densities

Jωmn(k, t) defined by

Jωmn(k, t) := 2δ(ω(k)− (εm − εn))

π|gω(k)|2((N(k) + 1)ρmm(t)−N(k)ρnn(t))

Notice that one has one micro–current

density for each strictly positive Bohr frequency

ωmn := εm − εn > 0.



Integrating over Rd the micro–current number

density associated to the frequency ωmn(k, t), one

obtains the micro–current number current

associated to the Bohr frequencey ωmn(k, t):

Jωmn(t) =(∫
Rd
dk δ(ω(k)− (εm − εn))2π|gω(k)|2(N(k) + 1)

)
ρmm(t)

−
(∫

Rd
dk δ(ω(k)− (εm − εn))2π|gω(k)|2N(k)

)
ρnn(t)



Recalling the form of the (real part of the)

generalized transport coefficients (or suscepti-

bilities):

Γ−,ω = π
∫
dk |g(k)|2(N(k) + 1)δ(ω(k)− ω)

Γ+,ω = π
∫
dk |g(k)|2N(k)δ(ω(k)− ω)

we see that the quanta micro–currents are

Jωmn(t) = Γ−,ω ρmm(t)− Γ+,ω ρnn(t)

A corollary of this result is:

Theorem. In any state ρ of the system which is

stationary for the reduced (Markov)

evolution, i.e.

ρ(t) = ρ (⇔ ρmm(t) = ρmm)

each quanta micro–current is constant:

Jωmn = Γ−,ωρmm − Γ+,ωρnn

hence, a fortiori, the total number current J is

constant.



This seems to be a new principle in non–equilibrium

statistical mechanics.

It was called: dynamical detailed balance.

Dynamical because there are currents.

Detailed because it concerns with currents

associated with single Bohr frequencies.

See the paper:

L. Accardi, K. Imafuku,

Dynamical detailed balance and local KMS

condition for non-equilibrium states,

Int. J. Mod. Phys. B, 18 (4) & (5) (2004) 435–

467

quant-ph/0209088

Recall that:

Γ−,ω := Re((g|g)−ω ) = π
∫
dk |g(k)|2(N(k)+1)δ(ω(k)−ω)

Γ+,ω := Re((g|g)+
ω ) = π

∫
dk |g(k)|2N(k)δ(ω(k)−ω)



Detailed Balance

In equilibrium one does not expect macro–currents,

i.e.

J = 0

Definition

A stationary state ρ is said to satisfy the

detailed balance condition if

all micro–currents are zero, i.e.

Jωmn(t) = Γ−,ωρmm − Γ+,ωρnn ; ∀ωmn

Thus, if we suppose that

ρmm > 0 ; ∀m

this is equivalent to

Γ−,ω
Γ+,ω

=
ρnn

ρmm
; ∀ωmn



The quotient

Γ−,ω
Γ+,ω

has an important physical interpretation.
Suppose that
the function N(k) depends only on ω(k):

N(k) → N(ω(k))

then the generalized transport coefficients
become respectively:

Γ−,ωmn = π
∫
dk |g(k)|2(N(ω(k)) + 1)δ(ω(k)− ωmn)

= (N(ωmn) + 1)π
∫
dk |g(k)|2δ(ω(k)− ωmn)

=: (N(ωmn) + 1)cωmn

Γ+,ωmn = π
∫
dk |g(k)|2N(ω(k))δ(ω(k)− ωmn)

= π
∫
dk |g(k)|2N(ωmn)δ(ω(k)− ωmn)

= N(ωmn)cωmn (the same cωmn)



Therefore

Γ−,ωmn
Γ+,ωmn

=
(N(ωmn) + 1)cωmn

N(ωmn)cωmn
=
N(ωmn) + 1

N(ωmn)

depending only on N (universality).

Recalling that N(ω) is the density of

environment quanta (photon, phonons,gas

particles, . . . ) at frequency ω,

we see that the identity

Γ−,ωmn
Γ+,ωmn

=
N(ωmn) + 1

N(ωmn)

generalizes the well known Einstein formula of

radiation theory (see Heitler’s book):

Wemission

Wabsorption
=
nω + 1

nω
(6)

giving the ratio of the probability rate of

emission and absorption of a light quantum by an

atom.



The quotient of the transport

coefficients (generalized susceptivities) provide a

non–equilibrium generalization of Einstein

formula.

To prove this fact consider the detailed balance

condition:

Γ−,ωρmm = Γ+,ωρnn ; ∀ωmn

If cωmn = 0, the the ωmn–micro–current

is absent.

If cωmn 6= 0 then solutions the DB condition is

equivalent to

ρmm

ρnn
=

Γ+,ωmn

Γ−,ωmn
< 1



This suggests to define a non–linear

frequency dependent temperature function:

Γ+,ωmn

Γ−,ωmn
=: e−β(ωmn)

We call e−β(k) the non–linear Gibbs factor.

If the detailed balance principle is satisfied, then:

e−β(ωmn) =
ρmm

ρnn
=

Γ+,ωmn

Γ−,ωmn
= e−β(ωmn) = e−β(εm−εn)

we deduce

e−β(εm−εn) =
ρmm

ρnn
=
ρmm

ρkk

ρkk
ρnn

= e−β(εm−εk)e−β(εk−εk) ⇔

⇔ β(εm − εk) = β(εm − εk) + β(εk − εk)

Thus, fixing ε0 to be the minimum energy level

(assumed to exist) and defining

β̃(εm) := β(εm − ε0)



one finds

β̃(εm) = β̃(εm) + β̃(εk)

Therefore the function β must be linear

β̃(x) = β · x (β a constant) > 0

Thus we find the Gibbs state at inverse

temperature β and we recover the original

formulation of Einstein formula:

Wemission(ω)

Wabsorption(ω)
= eβω (7)



Philip Anderson
More is different,
Science, New Series, Vol. 177, No. 4047. (Aug.
4, 1972), pp. 393-396.

Reductionism: if we know the fundamental laws,
we know everything.

This point of view turned out to be too naive.

A more realistic point of view is constructionism:

... at each level of complexity entirely new proper-
ties arise ...

Psychology is not applied biology, nor biology is
applied chemistry ...


