Аффинные гомеоморфизмы пространства слабоаддитивных функционалов

Бегжанова Камила Уснатдиновна Каракалпакский государственный университет

03.12.2020

Введение

В настоящее время теория нелинейных функционалов играет важную роль в различных областях математики и её приложениях. Одним из важных классов нелинейных функционалов является пространство всех слабо аддитивных сохраняющих порядок нормированных функционалов определенных на пространстве всех действительнозначных непрерывных функций заданных на некотором компакте.

- Albeverio S., Ayupov Sh.A., Zaitov A.A., On certain properties of the spaces of order-preserving functionals // Topology and its Applications, – 2008.
- Beshimov R.B., Mamadaliev N.K., On the functor of semiadditive τ -smooth functional // Topology and its Applications, –2017.
- Zaitov A.A., On categorical properties of order-preserving functionals // Methods of Functional Analysis and Topology, – 2003.
- Radul T., On the functor of order-preserving functionals, Comment. Math. Univ. Carolin., -1998.

Введение

В 1992 году Л.Б.Шапиро установил, что пространство всех слабо аддитивных, сохраняющих порядок, нормированных, полуаддитивных, полумультипликативных, положительно-однородных функционалов на конусе $C(X)_{\perp}$ – всех действительных неотрицательных непрерывных функций на компакте X, гомеоморфно пространству $\exp(X)$ – всех непустых замкнутых подмножеств компакта X.

В 1998 году Т. Радул начал исследование пространство O(X) всех слабо аддитивных, сохраняющих порядок, нормированных функционалов на пространстве всех непрерывных функций на компакте X.

- Джаббаров Г.Ф., Описание экстремальных точек пространства слабо аддитивных положительно-однородных функционалов двухточечного множество // Узб.матем.журн., – 2005.
- Choquet G., Theory of Capacity // Ann. l'Institute Fourier, 1953-1954
- Zhou L., Integral representation of continuous comonotonically additive functionals // Trans. Amer. Math. Soc. – 1998.
- Zarichnyi M.M., Nykyforchyn O.R., Capacity functor in the category of compacta // Sb. Math., -2008.

Пространство C(X)

Пусть X – компакт. Через C(X) обозначим пространство всех непрерывных функций $f:X\to R$ с поточечными алгебраическими операциями и ѕирнормой, т.е. с нормой $\|f\|=\max{\{|f\left(x\right)|:x\in X\}}.$

Для каждого $c \in R$ через c_X обозначим постоянную функцию, определяемую по формуле $c_X(x) = c, \quad x \in X.$

Пусть $\phi,\ \psi\in C(X)$. Неравенство $\phi\leq\psi$ означает, что $\phi(x)\leq\psi(x)$ для всех $x\in X$.

Слабо аддитивные функционалы

 a Функционал $\nu:C(X)\to\mathbb{R}$ называется:

- слабо аддитивным, если для всех $\phi \in C(X)$ и $c \in \mathbb{R}$ выполняется равенство $\nu (\phi + c_X) = \nu (\phi) + c \cdot \nu (1_X)$;
- сохраняющим порядок, если для всех $\phi, \psi \in C(X)$ из $\phi \leq \psi$ вытекает $\nu(\phi) \leq \nu(\psi);$
- нормированным, если $\nu(1_X) = 1$;
- положительно-однородным, если $\nu\left(t\phi\right)=t\nu\left(\phi\right)$ при всех $\phi\in C\left(X\right)$, $t\in\mathbb{R},\,t\geq0;$
- полуаддитивным, если $\nu\left(\phi+\psi\right)\leq\nu\left(\phi\right)+\nu\left(\psi\right)$ при всех $\phi,\ \psi\in C\left(X\right)$.

 $[^]a\mathrm{Radul}$ T., On the functor of order-preserving functionals // Comment. Math. Univ. Carol., -1998

Обозначения

Для компакта X вводим следующие обозначения:

- O(X) множество всех слабо аддитивных, сохраняющих порядок и нормированных функционалов на C(X);
- OH(X) множество всех положительно-однородных функционалов из O(X);
- $OS\left(X\right) -$ множество всех полуаддитивных функционалов из $OH\left(X\right) ;$
- P(X) множество всех нормированных положительных линейных функционалов на C(X).

База топологии

Рассмотрим на множестве F(X), где $F=O,\ OH,\ OS,$ топологию поточечной сходимости, в частности, предбазу окрестностей функционала $\nu\in F(X)$ образуют множества вида

$$\left\langle \nu\,;\;\varphi,\;\varepsilon\right\rangle = \left\{ \nu^{'}\in F\left(X\right)\ :\; \left|\nu^{'}\left(\varphi\right)-\nu\left(\varphi\right)\right|<\varepsilon\;\right\},$$

где $\varepsilon > 0,\, \varphi \in C\left(X\right) .$

Отметим, что для n – точечного компакта $\mathbf{n}=\{0,\ 1,\ 2,\ ...,\ n-1\},\ n\in\mathbb{N},$ пространство $C\left(\mathbf{n}\right)$ изоморфно пространству \mathbb{R}^n , при этом изоморфизм задается по правилу

$$f \in C(\mathbf{n}) \to (f(0), f(1), ..., f(n-1)) \in \mathbb{R}^n$$
.

Бегжанова Камила Уснатдиновна КарАффинные гомеоморфизмы пространс

Операции ∨ и ∧

Определим операции \vee и \wedge на пространстве O(X). Для функционалов $\mu,\,\nu\in O(X)$ положим

$$(\mu \vee \nu)(\phi) = \max\{\mu(\phi), \ \nu(\phi)\}, \ \phi \in C(X);$$

$$(\mu \wedge \nu)(\phi) = \min\{\mu(\phi), \ \nu(\phi)\}, \ \phi \in C(X).$$

Также для непустого замкнутого подмножества $F\subset X$ положим

$$\mu_F(\phi) = \max\{\phi(x) : x \in F\};\ \nu_F(\phi) = \min\{\phi(x) : x \in F\}.$$

Имеет место следующие свойства

- $\mu \vee \nu$, $\mu \wedge \nu$, μ_F , $\nu_F \in O(X)$;
- $\mu \vee \nu, \mu_F \in OS(X)$.

Если компакт X содержит более одной точки, то существуют μ , ν_F $\in OS(X)$ такие, что $\mu \wedge \nu$, $\nu_F \notin OS(X)$.

Аффинный гомеоморфизм

Пусть A и B – выпуклые подмножества линейного топологического пространства E. Отображение $T:A\to B$ называется аффинным, если

$$T(\alpha x + (1 - \alpha)y) = \alpha T(x) + (1 - \alpha)T(y)$$

для всех $x,y\in A$ и $\alpha\in[0,1].$

При этом, если $T:A\to B$ является взаимно однозначным и взаимно непрерывным отображением, то оно называется аффинным гомеоморфизмом.

Пространство $OH(\mathbf{2})$ и $OS(\mathbf{2})$

Для фиксированного $a \in X$ через δ_a обозначим функционал Дирака определенной по правилу

$$\delta_a(\phi) = \phi(a), \quad \phi \in C(X).$$

Тогда

$$\delta_a \in P(X)$$
.

Отметим, что для $\mathbf{2} = \{0, 1\}$ имеют место

- пространство $OH(\mathbf{2})$ аффинно гомеоморфно квадрату с вершинами $\delta_0, \delta_1, \delta_0 \vee \delta_1, \delta_0 \wedge \delta_1; ^1$
- пространство $OS(\mathbf{2})$ аффинно гомеоморфно треугольнику с вершинами $\delta_0, \delta_1, \delta_0 \vee \delta_1$.

 $^{^{1}}$ Джаббаров Г.Ф., Описание экстремальных точек пространства слабо аддитивных положительно-однородных функционалов двухточечного множество // Узб.матем.журн., – 2005.

²Davletov D.E., Djabbarov G. F., Functor of semiadditive functionals // Methods of functional analysis and topology, −2008.

Пример 1.

Рассмотрим функционал $\mu: \mathbb{R}^3 \to \mathbb{R}$, определенный по правилу a

$$\mu\left(x,y,z\right) = \begin{cases} \frac{1}{3}\left(x+y+z\right), & \text{если } x=y=z\\ \frac{1}{3}\left(x+y+z+\frac{1}{4}\frac{(x-y)^2+(y-z)^2+(z-x)^2}{|x-y|+|y-z|+|z-x|}\right), \text{в против. сл.} \end{cases}$$

Тогда функционал μ принадлежит пространству OH(3), при этом, μ не является аддитивным.

 $[^]a$ А.А.Заитов, Теорема об открытом отображении пространств слабо аддитивных однородных функционалов. Матем. заметки, 88:5 (2010).

Описание пространства O(2)

Пусть $L_{\infty}(\mathbb{R})$ и $L_1(\mathbb{R})$ – банахово пространство классов действительных существенно ограниченных измеримых и классов действительных интегрируемых функций на \mathbb{R} , соответственно. Поскольку пространство $L_{\infty}(\mathbb{R})$ изометрически изоморфно сопряженному пространству пространства $L_1(\mathbb{R})$, то

$$L_{\infty}\left(\mathbb{R}\right)_{1}^{+}=\left\{ f\in L_{\infty}\left(\mathbb{R}\right):\ 0\leq f\leq\mathbf{1}\right\} ,$$

где **1** – единица в $L_{\infty}(\mathbb{R})$, является *-слабо компактным множеством.

Теорема 1.

Пространство $O(\mathbf{2})$ аффинно гомеомофно пространству $L_{\infty}(\mathbb{R})_{1}^{+}$, при этом гомеоморфизм $L_{\infty}(\mathbb{R})_{1}^{+} \to O(\mathbf{2})$ задается по правилу

$$\mu(x,y) = \int_{0}^{x-y} \varphi(t) dt + y, \qquad \varphi \in L_{\infty}(\mathbb{R})_{1}^{+}. \tag{1}$$

Описание множества $O_2(X)$

Пусть A — замкнутое пространство компакта X. Скажем, что функционал $\nu \in O(X)$ сосредоточен на A, если $\nu(f) = \nu(g)$ для всех $f,g \in C(X)$ с $f|_A = g|_A$. Наименьшее по включению замкнутое множество $A \subset X$ на котором функционал ν сосредоточен, называется носителем функционала $\nu \in O(X)$ и обозначается supp ν , т.е.,

$$\operatorname{supp} \nu = \bigcap \{A : \nu - \operatorname{cocpedotoчeh} A\}.$$

Через $O_{2}\left(X\right)$ обозначим множество всех функционалов $\mu\in O\left(X\right)$, носители которых состоят не более чем из двух точек.

Предложение 1.

Пусть X – компакт. Тогда всякий функционал $\mu \in O_{2}\left(X\right)$ имеет вид

$$\mu\left(f\right) = \int_{0}^{f(x_1) - f(x_2)} \varphi\left(t\right) dt + f\left(x_2\right), \tag{2}$$

где $\operatorname{supp} \mu = \{x_1, x_2\}, \quad \varphi \in L_{\infty}(\mathbb{R})_1^+.$

Аффинные гомеоморфизмы пространства полуаддитивных функционалов

Для выпуклого компакта K через $cc\left(K\right)$ обозначим пространство всех непустых выпуклых замкнутых подмножеств K. Напомним, что для каждого $A\in cc\left(P\left(X\right)\right)$ функционал ν_A определенный по правилу

$$\nu_A(\varphi) = \sup \{\mu(\varphi) : \mu \in A\}, \quad \varphi \in C(X)$$

принадлежит пространству $OS\left(X\right)$, при этом соответствие³

$$A \in cc(P(X)) \mapsto \nu_A \in OS(X)$$
 (3)

задает аффинный гомеоморфизм между пространствами $cc\left(P\left(X\right)\right)$ и $OS\left(X\right)$.

³Davletov D.E., Djabbarov G. F., Functor of semiadditive functionals // Methods of functional analysis and topology, −2008.

Отображение F(f)

Пусть X и Y – компактные пространства, а $f:X\to Y$ – непрерывное отображение между ними. Отображение $F(f):F(X)\to F(Y),$ где $F=P,\ OS,\ OH,\ O,$ определим как

$$F(f)(\mu)(\phi) = \mu(\phi \circ f), \quad \mu \in F(X), \ \phi \in C(X).$$

Отображение $T:OS\left(X\right)\to OS\left(Y\right)$ назовем сохраняющим верхние грани, если для $\nu_{1},\nu_{2}\in OS\left(X\right)$ имеет место

$$T(\nu_1 \vee \nu_2) = T(\nu_1) \vee T(\nu_2).$$

Пусть $f:X \to Y$ – непрерывное отображение. Тогда отображение

$$OS(f):OS(X)\to OS(Y)$$

является сохраняющим верхние грани аффинным отображением.

Теорема 2.

Если $T:OS\left(X\right)\to OS\left(Y\right)$ сохраняющее верхние грани аффинный гомеоморфизм, то существует гомеоморфизм $g:X\to Y$ такой, что $T=OS\left(g\right).$

Пример 2.

Пусть X = 2. Известно, что OS(2) аффинно гомеоморфно Δ^a :

$$\Delta = \left\{ (\alpha, \ \beta) \ : \ \alpha, \beta \in \mathbb{R}, \ 0 \le \alpha \le \beta \le 1 \right\},\,$$

при этом гомеоморфизм задается по правилу

$$(\alpha, \beta) \mapsto \lambda = \alpha \delta_0 + (1 - \beta) \delta_1 + (\beta - \alpha) \delta_0 \vee \delta_1,$$

где δ_a – функционал Дирака, а функционал $\delta_0 \vee \delta_1 \in OS(\mathbf{2})$:

$$(\delta_0 \vee \delta_1)(f) = \max \{\delta_0(f), \delta_1(f)\}, f \in C(\mathbf{2}).$$

$$T : OS\left(\mathbf{2}\right) \to OS\left(\mathbf{2}\right), \quad \delta_0 \mapsto \delta_0 \vee \delta_1, \quad \delta_0 \vee \delta_1 \mapsto \delta_1, \quad \delta_1 \mapsto \delta_0,$$

T.e.,
$$\alpha \delta_0 + (1 - \beta) \delta_1 + (\beta - \alpha) \delta_0 \vee \delta_1 \mapsto \alpha \delta_0 \vee \delta_1 + (1 - \beta) \delta_0 + (\beta - \alpha) \delta_1$$
.

Если $q: \mathbf{2} \to \mathbf{2}$ гомеоморфизм, то аффинный гомеоморфизм

 $OS(q): OS(\mathbf{2}) \to OS(\mathbf{2})$ переводит множество $\{\delta_0, \delta_1\}$ в себя.

Следовательно, T не может быть представлен в виде OS(q).

^aDavletov D.E., Djabbarov G. F., Functor of semiadditive functionals // Methods of functional analysis and topology, -2008

Интеграл Шоке

Действительнозначные функции $f,g:X\to\mathbb{R}$ называем комонотонными, если для любых $x_1,x_2\in X$ имеет место

$$(f(x_1) - f(x_2))(g(x_1) - g(x_2)) \ge 0.$$

Отметим, что в частности постоянная функция комонотонна любой функции.

Если $\mu:C(X)\to\mathbb{R}$ удовлетворяет следующим пяти свойствам:

- $\mu(\varphi) \geq 0$ для всех $\varphi \geq 0$;
- $\mu(1_X) = 1;$
- \bullet $\mu(k\varphi)=k\mu(\varphi)$ для всех $\varphi\in C(X)$ и $k\in\mathbb{R}_+;$
- ullet $\mu(\varphi+\psi)=\mu(\varphi)+\mu(\psi)$ для каждой пары комонотонных функций $\varphi,\psi\in C(X);$
- \bullet $\mu(\varphi) \leq \mu(\psi)$ для каждой пары $\varphi, \psi \in C(X)$ с условием $\varphi \leq \psi$, то μ называются интегралом Шоке.
- Через M(X) обозначим множество всех интегралов Шоке на X.

Интеграл Шоке

Для каждого компакта X обозначаем через exp(X) пространство всех непустых замкнутых подмножеств X.

Функция $c: exp(X) \cup \{\varnothing\} \to [0,1]$ называется емкостью⁴ на компакте X, если для всех замкнутых подмножеств $F, G \in exp(X)$ выполняются следующие три свойства

- 1) $c(\emptyset) = 0$, c(X) = 1;
- 2) если $F \subseteq G$, тогда $c(F) \le c(G)$ (монотонность);
- 3) если c(F) < a,тогда существует открытое множество $U \supset F$ такое, что длялюбого $G \subset U$ мы имеем c(G) < a (полунепрерывность сверху).

Каждый функционал $\mu:C(X)\to\mathbb{R}$ со свойствами 1)–5) является интегралом Шоке для емкости $c\in M(X)$ определяемой по формуле

$$c(F) = \inf \{ \mu(\varphi) : \varphi \in C_+(X), \varphi(x) \ge 1, \forall x \in F \}.$$

Бегжанова Камила Уснатдиновна КарАффинные гомеоморфизмы пространс

⁴Zarichnyi M.M., Nykyforchyn O.R., Capacity functor in the category of compacta // Sb. Math., −2008

Решетка $(M(X), \vee, \wedge)$

Отметим, что

$$M(X) \subset OH(X) \subset O(X)$$
.

Для $c_1, c_2 \in M(X)$ имеем $c_1 \vee c_2, c_1 \wedge c_2 \in M(X)$. Тройка $(M(X), \vee, \wedge)$ является решеткой.

Пусть $f: X \to Y$ – непрерывное отображение. Тогда

$$OH(f)(M(X)) \subseteq M(Y).$$

Поэтому корректно определено отображение

$$M(f) = \left. OH(f) \right|_{M(X)} : \ M(X) \to M(Y).$$

Бегжанова Камила Уснатдиновна КарАффинные гомеоморфизмы пространс

Решеточный гомеоморфизм

Отображение $T:M\left(X\right) \to M\left(Y\right)$ назовем решеточным, если для $\nu_{1},\nu_{2}\in M\left(X\right)$ имеет место

$$T\left(\nu_{1}\vee\nu_{2}\right)=T\left(\nu_{1}\right)\vee T\left(\nu_{2}\right)\ \text{if}\ T\left(\nu_{1}\wedge\nu_{2}\right)=T\left(\nu_{1}\right)\wedge T\left(\nu_{2}\right).$$

Теорема 3.

Пусть X – компакт и $\Phi: M(X) \to M(X)$ является аффинным гомеоморфизмом. Следующие утверждения эквивалентны:

- Ф является решеточным гомеоморфизмом;
- ullet существует гомеоморфизм f:X o X такой, что $\Phi=M(f).$

Пример 3.

Пусть $X=\mathbf{2}$. Для каждого $c\in M\left(\mathbf{2}\right)$ определим следующие числа

$$\alpha_i = c(\{i\}), i = 1, 2.$$

Так как $c \in M(\mathbf{2})$, то $0 \le \alpha_i \le 1$, i = 1, 2. Ясно, что отображение

$$c \in M\left(\mathbf{2}\right) \to (\alpha_1, \alpha_2) \in [0, 1] \times [0, 1]$$

является аффинным гомеоморфизмом. M(2) аффинно гомеоморфно квадрату $[0,1] \times [0,1]$. Поэтому аффинное отображение:

$$(1,0) \mapsto (1,1), \quad (0,1) \mapsto (0,0), \quad (0,0) \mapsto (0,1), (1,1) \mapsto (1,0)$$

задает также аффинный гомеоморфизм $T:M(\mathbf{2})\to M(\mathbf{2})$. Как и в Примере 2, для всякого гомеоморфизма $g:\mathbf{2}\to\mathbf{2}$ аффинный гомеоморфизм $M(g):M(\mathbf{2})\to M(\mathbf{2})$ переводит множество $\{(1,0),\ (0,1)\}$ в себя. Следовательно, T не может быть представлен в виде M(g).

4D > 4B > 4E > 4E > E 990

Метризация пространства слабо аддитивных функционалов

Пусть $(X,\ \rho)$ – метрический компакт. Для каждого $k\in\mathbb{N}$ положим

$$\operatorname{Lip}_{k}\left(X\right)=\left\{ \left.\varphi\right.:\;X\rightarrow\mathbb{R}|\quad\left|\varphi\left(x\right)-\varphi\left(y\right)\right|\leq k\rho\left(x,\;y\right),\;\;\forall x,\,y\in X\right\}$$

и Lip $(X)=\bigcup\limits_{k=1}^{\infty}$ Lip $_k(X)$. Определим функцию $\rho_k:O(X) imes O(X)\to \mathbb{R}$ по правилу

$$\rho_k(\mu, \nu) = \sup \{ |\mu(\phi) - \nu(\phi)| : \phi \in \operatorname{Lip}_k(X) \}, \quad \mu, \nu \in O(X).$$
 (4)

Для всех μ , $\nu \in O(X)$,

$$\rho_k(\mu, \nu) \le k \operatorname{diam}(X). \tag{5}$$

Метрика на O(X)

Определим функцию $\rho_{O}: O\left(X\right) \times O\left(X\right) \to \mathbb{R}$ по правилу

$$\rho_O(\mu, \nu) = \sum_{k=1}^{\infty} 2^{-k-1} \rho_k(\mu, \nu), \qquad \mu, \nu \in O(X)$$
 (6)

Функция ρ_O определенная по правилу (6), является метрикой на O(X).

Теорема 4.

Метрика ρ_O порождает топологию поточечной сходимости на O(X).

Замечание

- Федорчук В.В., Тройки бесконечных итераций метризуемых функторов // Изв.АН СССР. Сер. матем. 1990.
- Zarichnyi M.M., Nykyforchyn O.R., Capacity functor in the category of compacta // Sb. Math., - 2008.
- \bullet Djabbarov G. F., A Triple of infinite iterates of the functor of positively homogeneous functionals // Siberian Advances in Mathematics, 2019.
- Zaitov A.A., On a metric on the space of idempotent probability measures // Applied General Topology, – 2020.

Пример 4.

Покажем, что для (X, ρ) функция ρ_k $(k \ge 1)$ определенное по (4) не является метрикой. Пусть $k \ge 1$. Возьмем $x_1, x_2 \in X$. Положим $\delta = \rho(x_1, x_2)$. Числа $a, b, c, d \in \mathbb{R}$ выберем, $k\delta < a < b < c < d$. Пусть χ_1 и χ_2 характеристические функций отрезков [a, b] и [c, d], соответственно. Положим

$$\mu_i(\phi) = \int_0^{\phi(x_1) - \phi(x_2)} \chi_i(t)dt + \phi(x_2), \quad \phi \in C(X), \quad i = 1, 2.$$

имеем, что $\mu_i \in O(X)$, i = 1, 2. Тогда,

- $\mu_1 \neq \mu_2$;
 - $\rho_k(\mu_1, \, \mu_2) = 0.$

Это означает, что ρ_k $(k \ge 1)$ не является метрикой.

Спасибо за внимание!

Список опубликованных работ

I часть

- 1. Кудайбергенов К.К., Бегжанова К.У. Метризация пространства полуаддитивных функционалов // Узбекский математический журнал. 2010. 4. C. 82–92. (01.00.00; №6).
- 2. Бегжанова К.У. Решеточные гомеоморфизмы пространства полуаддитивных функционалов // Узбекский математический журнал. 2011. 4. C. 52–58. (01.00.00; №6).
- 3. Кудайбергенов К.К., Бегжанова К.У. Описание слабо аддитивных функционалов на плоскости, сохраняющих порядок // Владикавказский математический журнал. 2011. Том 13. Выпуск 1. С. 31-37. (3. Scopus IF=0.431).
- 4. Бегжанова К.У. Метризация пространства слабо аддитивных функционалов // Известия ВУЗов. Математика. 2018. №3. С. 3–8. (3. Scopus IF=0.619).

- 5. Kudaybergenov K., Begjanova K. Lattice affine homeomorphisms of the pace of capacities // Science and Education in Karakalpakstan. − 2019. − №4. - C. 28-34. (01.00.00; №11).
- 6. Begjanova K. Extreme boundary of the space of weakly additive order preserving Functionals on the p lane // Science and Education in Karakalpakstan. – 2019. – №4. – C. 25-27. (01.00.00; №11).

II часть

- 7. Бегжанова К.У. Метризация пространства слабо аддитивных функционалов // Вестник Каракалпакского государственного университета имени Бердаха. – 2016. – №2. – С. 5-7.
- 8. Бегжанова К.У. Решеточные гомеоморфизмы пространства полуаддитивных функционалов // Материалы Республиканской конференции "Современные проблемы комплексного и функционального анализа". – Нукус. – 2012. – С.41-43.

- 9. Бегжанова К.У. Гомеоморфизмы пространства слабо аддитивных функционалов с конечными носителями // Международная конференция прикладной и геометрический анализ. Самарканд. —2014. С. 38.
- 10. Бегжанова К.У. Гомеоморфизмы пространства слабо аддитивных функционалов с конечными носителями // Материалы научной конференции "Актуальные вопросы геометрии и её приложения". Ташкент. –2014. С. 66-69.
- 11. Бегжанова К.У. Экстремальная граница пространства слабо аддитивных сохраняющих порядок функционалов на плоскости // "Ёш олимлар" Республика илмий-амалий конференцияси. Термиз. 2016. 117-118 б.

- 12. Бегжанова К.У. Метризация пространства слабо аддитивных функционалов // Материалы межвузовской конференции "Актуальные проблемы и решение естественных и точных наук". Нукус. 2017. C.15-17.
- 13. Ведјапоvа К.U. Lattice affine homeomorphisms of the space of capacities // Сборник тезисов научной онлайн конференции "Современные проблемы математики" . Нукус. 2020. С.26-27.
- 14. Бегжанова К.У. Решеточные аффинные гомеоморфизмы пространства емкостей // Abstracts of the international online conference "Frontier in mathematics and computer science" Tashkent. 2020. 176 p.