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PaccMoTpuM 3a71a1y ONTUMAJIBHOTO YIPABIEHHsI JJisl yPABHEHUH, MOJIe-
JIIPYIONIMX JIMHAMUKY HECXKMMaeMoll BA3KOyNpyroii kuakoctu tuna Keb-
suna—®Doiirra [1, 2]:

A
@—F(’U-V)’U—VA’U—%M—FV]):]: B Qx (0,7), (1)
ot ot

V.-v=0 B Qx(0,7), (2)
v=20 Ha O x (0,7), (3)
v(,0)=u B Q, (4)
u c Uad, (5)
J(v,Vp,u) = Ajv - %HQC’([O,T];Hl(Q)) + A2l Vp — §H2L2(0,T;L2(Q)) +
+ XA3)lw — @[3 ) — inf . (6)

Bneck 2 — orpanudennas obaactb B R™ (n = 2, 3) ¢ rpanumeit 0Q € C2, T —
(PUKCUPOBAHHOE TTOJIOXKUTEIHHOE YUCTIO, ¥ — CKOPOCTH TEUEHUS YKUJIKOCTH,
P — JABJIEHUE B XKUJIKOCTHU, f — M3BECTHOE I0JI€ BHEIIHUX CHUJI, TTaPaAMETPbI
v > 0 u » > 0 XxapakTepusyoT COOTBETCTBEHHO BA3KHE U yIPYyTUe CBOW-
CTBa JKUJKOCTH, % — mapaMeTp ynupasjienus, U,q — 3aJaHHOe MHOXKECTBO
JIOIIYCTUMBIX yIpasJieHuit, J — 1eiaeBoit pyHKIMOHAI, U, g, U — 3aJaHHbIE
BeKTOp-QYHKINHU, A\;, i = 1,2, 3, — nmapamerpsl GpyHKIHOHATA J,

0< N\ <1, A+ A+ A3 =1.

*Pabora mepBoro aBropa YacTUYHO Nojjeprkana Poccuiickum ¢dongoMm dyHmaMen-
TaJbHBIX uccirenobanuii (rpant Ne16-31-00182-mour _a).
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Bameuvanue 1. B upenenbroM ciydae, Korma » = 0, ypasrenus (1), (2)
Hepexo/IAT B XOPOIIO U3BecTHBIE ypaBHenusa Hasbe—CToKCa, OMUCHIBAOIIE
JIBUKEHUE HbIOTOHOBCKOI KUIKOCTH.

ByjieM ncnosis30BaTh crangaprabie obosnadenus H () = W*2(Q) s
npoctparcTe CobosieBa BEKTOP-(MDYHKINIA, ONPEJIEIEHHBIX Ha () cO 3HAUEHMU-
avu B R™. Yepez D()) 0603Ha9MM MHOXKECTBO TJIAIKUX BEKTOP-(DYHKIUI
¢ Hocmresem, comepxmvcs B €. Bampikanme D(Q) B H'(Q) oGosnasmm we-
pes H (1)((2) BeemeM Takzke IPOCTPAHCTBO

V={ve H)Q): V-v =0}
IIpeamomoxxmm, 910
feC(0,TH L),  U.a C[VNH*(Q) (7)
veC(0,T; H (), geL*0,T;L*Q), wecH(Q). (8
Onpepnesienune 1. Byzgem rosoputs, uro (v, p, w) — donycmuman mpot-
Ka 3amaqn (1)-(6), ecim
ve CY[0,T);VNH*Q), pecC(0,T];HY(Q)/R), u € Uyg
¥ BBIIOJTHEHBI PABEHCTBA,
v'(t) + (v(t) - V)v(t) — vAv(t) — »Av'(t) + Vp(t) = f(t), t € [0,7],
v(0) = u.

MHOXKeCcTBO JIOIycTUMBIX Tpoek 3azaun (1)—(6) obosnaunm uepes M.
Onpepesenne 2. Pewenuem 3amaqdn onrumusanun (1)—(6) nazosem
TPOHKY (U, Ps, Ux) € M Taxyio, 4ro

J (Vi Pi, Us) = inf J(v,p,u).
(vep ) (v,p,u)eM (v.p,u)

CdopmysupyeM Ternepb OCHOBHOM pe3yJibTaT paboThI.

Teopema. Ilycmwv swvinosnenv, yeaosus (7), (8) u mmuoorcecmso Uyg
02PAHUMEHO U CEKBEHUUAADHO CAAD0 3amKrHymo 6 npocmpancmee V N H 2(Q)
Toz0a 3adaua (1)—(6) umeem no xpatined mepe 0dHo peweriue.

3ameyanune 2. Usyuenne cucremsl (1), (2) n pasaudsbix ee Moudu-
Karuii Hagasochk ¢ cepun crareit A.I1. Ockoukosa [1-4] n 6b110 HPOI0IZKEHO
B paborax psua poccuiickux [5-9] u sapy6exubix [10-12| aBropos. Ciemy-
€T TaKKe OTMETHUTH, UTO B cTraThe |13] paccMoTpena 3aat1a ONTHMATBEHOTO
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VIIpaBJIeHUs JJIs yPaBHEHU, MOAEIUPYIONIUX IIJIOCKOIAPAJIIEILHYIO JUHA-
MUKy Bs3KOynpyrux xuiakocreil Kenbsuna—®@oiirra. B nuccepramun [14]
HIOJIyY€eHBI PE3YJILTATEL O PA3PENINMOCTH 33/1a49U YIIPABJIEHUS II0CPEICTBOM
BHemHux cuil f jisa mogenu (1), (2) B ciaaboil OCTAHOBKE IIPU YCJIOBUSIX
MPHUCTEHHOTO CKOJbKeHnst. OnTnMaabHOe yIPaBIeHHe U yCTOHINBOCTD pe-
IIeHU} JINHeAPU30BAHHOTO OJHOMEPHOro ypaBHeHus (1) Ha reoOMeTpuIecKoM
rpadpe nccuemyrores B [15].
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One of the most general and well-known results on the existence of solu-
tions to infinite-horizon optimal control problems was proved by Balder [1]
for the problem

I(z,u) = /OOO Folt, (), u(t)) dt — min, (1)
z(t) = f(t,x(t),u(t)) for a.e. t € Ry :=[0,+00), (2)
2(t) € At),  u(t) €U(ta(t) forae. teRy, 3)

where
(i) A: Ry = R" is a set-valued map with (£ x B™)-measurable! graph A;
(i) U: A = R™ is a set-valued map with (£ x B"*™)-measurable
graph U;
(iii) the functions f: U — R™ and fo: U — R U {400} are (L x B"T™)-
measurable.?

LThat is, lying in the c-algebra generated in R4+ X R™ by the Cartesian products of
Lebesgue measurable subsets in R4 and Borel subsets in R™.
2That is, the preimages of Borel sets are (£ x B"™)-measurable.
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