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Рассмотрим задачу оптимального управления для уравнений, моде-
лирующих динамику несжимаемой вязкоупругой жидкости типа Кель-
вина–Фойгта [1, 2]:

∂v

∂t
+ (v · ∇)v − νΔv − κ

∂Δv

∂t
+∇p = f в Ω× (0, T ), (1)

∇ · v = 0 в Ω× (0, T ), (2)

v = 0 на ∂Ω× (0, T ), (3)

v(·, 0) = u в Ω, (4)

u ∈ Uad, (5)

J(v,∇p,u) = λ1‖v − ṽ‖2C([0,T ];H1(Ω)) + λ2‖∇p− g̃‖2L2(0,T ;L2(Ω)) +

+ λ3‖u− ũ‖2H1(Ω) → inf . (6)

Здесь Ω— ограниченная область в Rn (n = 2, 3) с границей ∂Ω ∈ C2, T —
фиксированное положительное число, v — скорость течения жидкости,
p — давление в жидкости, f — известное поле внешних сил, параметры
ν > 0 и κ > 0 характеризуют соответственно вязкие и упругие свой-
ства жидкости, u — параметр управления, Uad — заданное множество
допустимых управлений, J — целевой функционал, ṽ, g̃, ũ — заданные
вектор-функции, λi, i = 1, 2, 3, — параметры функционала J ,

0 ≤ λi ≤ 1, λ1 + λ2 + λ3 = 1.

∗Работа первого автора частично поддержана Российским фондом фундамен-
тальных исследований (грант №16-31-00182-мол_а).
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Замечание 1. В предельном случае, когда κ = 0, уравнения (1), (2)
переходят в хорошо известные уравнения Навье–Стокса, описывающие
движение ньютоновской жидкости.
Будем использовать стандартные обозначенияHk(Ω) = W k,2(Ω) для

пространств Соболева вектор-функций, определенных на Ω со значени-
ями в Rn. Через D(Ω) обозначим множество гладких вектор-функций
с носителем, содержимся в Ω. Замыкание D(Ω) в H1(Ω) обозначим че-
рез H1

0(Ω). Введем также пространство

V = {v ∈ H1
0(Ω): ∇ · v = 0}.

Предположим, что

f ∈ C([0, T ];L2(Ω)), Uad ⊂ [V ∩H2(Ω)], (7)

ṽ ∈ C([0, T ];H1(Ω)), g̃ ∈ L2(0, T ;L2(Ω)), ũ ∈ H1(Ω). (8)

Определение 1. Будем говорить, что (v, p,u)— допустимая трой-
ка задачи (1)–(6), если

v ∈ C1([0, T ];V ∩H2(Ω)), p ∈ C([0, T ];H1(Ω)/R), u ∈ Uad

и выполнены равенства

v′(t) + (v(t) · ∇)v(t)− νΔv(t)− κΔv′(t) +∇p(t) = f(t), t ∈ [0, T ],

v(0) = u.

Множество допустимых троек задачи (1)–(6) обозначим через M .
Определение 2. Решением задачи оптимизации (1)–(6) назовем

тройку (v∗, p∗,u∗) ∈ M такую, что

J(v∗, p∗,u∗) = inf
(v, p,u)∈M

J(v, p,u).

Сформулируем теперь основной результат работы.
Теорема. Пусть выполнены условия (7), (8) и множество Uad

ограничено и секвенциально слабо замкнуто в пространстве V ∩H2(Ω).
Тогда задача (1)–(6) имеет по крайней мере одно решение.
Замечание 2. Изучение системы (1), (2) и различных ее модифи-

каций началось с серии статей А.П. Осколкова [1–4] и было продолжено
в работах ряда российских [5–9] и зарубежных [10–12] авторов. Следу-
ет также отметить, что в статье [13] рассмотрена задача оптимального
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управления для уравнений, моделирующих плоскопараллельную дина-
мику вязкоупругих жидкостей Кельвина–Фойгта. В диссертации [14]
получены результаты о разрешимости задачи управления посредством
внешних сил f для модели (1), (2) в слабой постановке при условиях
пристенного скольжения. Оптимальное управление и устойчивость ре-
шений линеаризованного одномерного уравнения (1) на геометрическом
графе исследуются в [15].
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One of the most general and well-known results on the existence of solu-
tions to infinite-horizon optimal control problems was proved by Balder [1]
for the problem

I(x, u) :=

∫ ∞

0

f0(t, x(t), u(t)) dt → min, (1)

ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ R+ := [0,+∞), (2)

x(t) ∈ A(t), u(t) ∈ U(t, x(t)) for a.e. t ∈ R+, (3)

where

(i) A : R+ ⇒ Rn is a set-valued map with (L×Bn)-measurable1 graph A;

(ii) U : A ⇒ Rm is a set-valued map with (L × Bn+m)-measurable
graph U ;

(iii) the functions f : U → Rn and f0 : U → R ∪ {+∞} are (L × Bn+m)-
measurable.2

1That is, lying in the σ-algebra generated in R+ × Rn by the Cartesian products of
Lebesgue measurable subsets in R+ and Borel subsets in Rn.

2That is, the preimages of Borel sets are (L × Bn+m)-measurable.
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