Grigorii Ivanov

Moscow Institute of Physics and Technology, Dolgoprudny, Russia g.e.ivanov@mail.ru

In the present paper we continue the research started in [1] and [2]. Let X and P be Banach spaces and $h: X \times P \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function. Consider the problem

 \mathcal{P}_h : minimize h(x, p) over $x \in X$

with parameter $p \in P$. The optimal value of \mathcal{P}_h at $p \in P$ is $h_{inf}(p) = \inf_{x \in X} h(x, p)$ and $x \in X$ is called a solution of \mathcal{P}_h at $p \in P$ if $h(x, p) = h_{inf}(p) \in \mathbb{R}$. A sequence $\{x_k\} \subset X$ is called minimizing for \mathcal{P}_h at $p \in P$ if $\lim_{k \to \infty} h(x_k, p) = h_{inf}(p)$.

Let \mathcal{P}_h admit at $p_0 \in P$ a unique solution x_0 . Define the function $\Delta_{h,p_0}: P \to [0, +\infty)$ as

$$\Delta_{h,p_0}(p) = \inf_{\{x_k\} \text{ is a minimizing sequence for } \mathcal{P}_h \text{ at } p} \liminf_{k \to \infty} \|x_k - x_0\|, \qquad p \in P.$$

The problem \mathcal{P}_h is called *approximately well-posed* (AWP) at $p_0 \in P$ if it admits a unique solution at p_0 , $h_{inf}(p)$ is finite for p in some neighborhood of p_0 and

$$\lim_{p \to p_0} \Delta_{h, p_0}(p) = 0.$$

If, in addition, there exists a constant L > 0 such that $\Delta_{h,p_0}(p) \leq L ||p-p_0||$ for all p in some neighborhood of p_0 , then the problem \mathcal{P}_h is called *Lipschitz approximately well-posed* (LAWP) at p_0 with constant L.

We elaborate some subdifferential calculus of the optimal value (marginal) function $h_{inf}(\cdot)$ provided that \mathcal{P}_h is AWP or LAWP. Then we state some sufficient conditions for \mathcal{P}_h to be AWP and LAWP.

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$ and $\varepsilon \ge 0$, the Fréchet ε -subdifferential of f at $x_0 \in \text{dom } f := \{x \in X : f(x) \in \mathbb{R}\}$ is

$$\partial^{F,\varepsilon} f(x_0) = \left\{ x^* \in X^* \colon \forall \eta > 0 \; \exists \delta > 0 \colon \forall x \in B_{\delta}(x_0) \\ \langle x^*, x - x_0 \rangle \le f(x) - f(x_0) + (\varepsilon + \eta) \| x - x_0 \| \right\},\$$

where $B_{\delta}(x_0) = \{x \in X : ||x - x_0|| < \delta\}$. If $\varepsilon = 0$, then $\partial^F f := \partial^{F,\varepsilon} f$ is called the *Fréchet subdifferential*.

The Mordukhovich limiting subdifferential $\partial^L f(x_0)$ at $x_0 \in \text{dom } f$ is the set of $x^* \in X^*$ such that there exist $\varepsilon_k \downarrow 0$, $x_k \to x_0$ with $f(x_k) \to f(x_0)$, and $x_k^* \to x^*$ weakly star and $x_k^* \in \partial^{F,\varepsilon_k} f(x_k)$ for all $k \in \mathbb{N}$.

We use $\partial^{F,\varepsilon}h(x,p)$ and $\partial^{L}h(x,p)$ to denote respectively the Fréchet ε -subdifferential and the limiting subdifferential of h at $(x,p) \in \text{dom } h$ with respect to the norm ||(x,p)|| = ||x|| + ||p|| in $X \times P$. We denote by $\partial^{F,\varepsilon}_x h(x,p)$ the Fréchet ε -subdifferential of the function $h(\cdot,p)$ at the point x. We shall use $\partial^{L}_x h(x,p)$ to denote the set of $x^* \in X^*$ such that there exist $\varepsilon_k \downarrow 0$, $(x_k, p_k) \to (x_0, p_0)$ with $h(x_k, p_k) \to h(x, p)$, and $x_k^* \to x^*$ weakly star and $x_k^* \in \partial^{F,\varepsilon_k}_x h(x_k, p_k)$ for all $k \in \mathbb{N}$. Similarly we define $\partial^{F,\varepsilon}_p h(x,p)$ and $\partial^{L}_p h(x,p)$.

A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is called *lower regular* at a point $x \in \text{dom } f$ (see [3]) whenever $\partial^L f(x) = \partial^F f(x)$.

Theorem 1. Let $x_0 \in X$ be a solution of \mathcal{P}_h at $p_0 \in P$. Then for all $\varepsilon \geq 0$

$$\{0\} \times \partial^{F,\varepsilon} h_{\inf}(p_0) \subset \partial^{F,\varepsilon} h(x_0, p_0) \subset \partial^{F,\varepsilon}_x h(x_0, p_0) \times \partial^{F,\varepsilon}_p h(x_0, p_0).$$

If, in addition, \mathcal{P}_h is AWP at p_0 , then

$$\{0\} \times \partial^L h_{\inf}(p_0) \subset \partial^L h(x_0, p_0) \subset \partial^L_x h(x_0, p_0) \times \partial^L_p h(x_0, p_0).$$

Theorem 1 correlates with the results of Thibault [5, Proposition 3.1] and those of Ngai, Luc and Théra [6, Theorem 2.5].

The next theorem provides sufficient conditions for \mathcal{P}_h to be LAWP (and consequently AWP).

Theorem 2. Let $x_0 \in X$, $p_0 \in P$ and $\lambda > 0$, $\mu, \gamma \in \mathbb{R}$ be such that for all p in some neighborhood of p_0 and for all $x \in X$

$$h(x,p) \ge h(x_0,p_0) + \lambda ||x - x_0|| - \mu ||p - p_0||,$$

$$h(x_0,p) \le h(x_0,p_0) + \gamma ||p - p_0||.$$

Then \mathcal{P}_h admits a unique solution x_0 at p_0 and \mathcal{P}_h is LAWP at p_0 with constant $L = (\mu + \gamma)/\lambda$.

The rest of the paper is devoted to the infimal convolution problem.

The Moreau-type *infimal convolution* of two functions $f, g: X \to \mathbb{R} \cup \{+\infty\}$ is

$$(f \boxplus g)(p) = \inf_{x \in X} (f(x) + g(p - x)), \qquad p \in X.$$

The infimal convolution problem $\mathcal{P}_{f,g}$ at a point $p \in X$ is the problem \mathcal{P}_h with

$$h(x,p) = f(x) + g(p-x), \qquad x, p \in X.$$

From now on we assume that functions f and g are lower semicontinuous, which guarantees lower semicontinuity of h(x, p) = f(x) + g(p - x).

Theorem 3. Let $x_0 \in X$ be a solution of $\mathcal{P}_{f,g}$ at $p_0 \in X$. Then for all $\varepsilon \geq 0$

$$\partial^{F,\varepsilon}(f \boxplus g)(p_0) \subset \left(\partial^{F,\varepsilon}f(x_0)\right) \cap \left(\partial^{F,\varepsilon}g(p_0 - x_0)\right).$$

If, in addition, $\mathcal{P}_{f,g}$ is AWP at p_0 , then

$$\partial^L(f \boxplus g)(p_0) \subset (\partial^L f(x_0)) \cap (\partial^L g(p_0 - x_0)).$$

If, in addition, f is continuously differentiable in some neighborhood of x_0 or g is continuously differentiable in some neighborhood of $p_0 - x_0$, then the latter two inclusions are equalities.

Theorem 4. Suppose that $x_0 \in X$ is the solution of $\mathcal{P}_{f,g}$ at $p_0 \in X$ and the problem $\mathcal{P}_{f,g}$ is LAWP at p_0 with constant L. Then for all $\varepsilon \geq 0$

$$\left(\partial^{F,\varepsilon}f(x_0)\right) \cap \left(\partial^{F,\varepsilon}g(p_0 - x_0)\right) \subset \partial^{F,(2L+1)\varepsilon}(f \boxplus g)(p_0).$$

If, in addition, f and g are lower regular at points x_0 and $p_0 - x_0$ respectively, then $f \boxplus g$ is lower regular at p_0 .

Theorem 5. Suppose that $x_0, z_0 \in X$, $\alpha, \beta, \gamma \in \mathbb{R}$, $\alpha + \beta > 0$, $f: X \to \mathbb{R} \cup \{+\infty\}$ and $g: X \to \mathbb{R}$ are such that for all $x, z \in X$

$$f(x) - f(x_0) \ge \alpha ||x - x_0||, \tag{1}$$

$$g(z) - g(z_0) \ge \beta ||z - z_0||, \tag{2}$$

$$g(z) - g(z_0) \le \gamma ||z - z_0||.$$
 (3)

Then $\mathcal{P}_{f,g}$ admits a unique solution x_0 at $p_0 = x_0 + z_0$ and $\mathcal{P}_{f,g}$ is LAWP at p_0 with constant $L = (|\beta| + \gamma)/(\alpha + \beta)$.

If, in addition, f and g are lower regular at points x_0 and z_0 respectively, then $f \boxplus g$ is lower regular at p_0 .

Theorems 3-5 improve Theorem 5.5 in [4], Theorems 3.1, 3.2 in [1] and Theorems 3.1, 4.2 in [2].

References

- Ivanov G.E., Thibault L. Infimal convolution and optimal time control problem. I: Fréchet and proximal subdifferentials // Set-Valued Var. Anal. 2017. DOI:10.1007/s11228-016-0398-z.
- Ivanov G.E., Thibault L. Infimal convolution and optimal time control problem. II: Limiting subdifferential // Set-Valued Var. Anal. 2017. To appear.
- Mordukhovich B.S. Approximation Methods in Problems of Optimization and Control. New York: J. Wiley & Sons, 2005.
- Nam N.M., Cuong D.V. Generalized differentiation and characterizations for differentiability of infimal convolutions // Set-Valued Var. Anal. 2015. V. 23. P. 333–353.
- Thibault L. On subdifferentials of optimal value functions // SIAM J. Control Optim. 1991. V. 29, N 5. P. 1019–1036.
- Van Ngai H., The Luc D., Théra M. Extensions of Fréchet ε-subdifferential calculus and applications // J. Math. Anal. Appl. 2002. V. 268, N 1. P. 266–290.

Построение множества разрешимости в дифференциальных играх с простыми движениями (Construction of the solvability set for differential games with simple motion)*

Л. В. Камнева (L. V. Kamneva), В. С. Пацко (V. S. Patsko)

Институт математики и механики УрО РАН, Екатеринбург, Россия

kamneva@imm.uran.ru, patsko@imm.uran.ru

Пусть движение управляемой системы на плоскости описывается динамикой простых движений [1]:

 $\dot{x} = u + v, \qquad u \in P, \quad v \in Q, \quad t \in [0, \vartheta], \quad \vartheta > 0.$

^{*}Работа выполнена при финансовой поддержке РФФИ (проект 15-01-07909) и программы Президиума РАН "Математические задачи современной теории управления".